Design of a reversible bidirectional barrel shifter

Saurabh Kotiyal, Himanshu Thapliyal, Nagarajan Ranganathan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

25 Scopus citations

Abstract

Reversible logic has promising applications in the field of quantum computing, optical computing, low power computing, and other emerging computing technologies. A barrel shifter that can shift and rotate multiple bits in a single cycle is an important component of many computing units. This paper presents the reversible design of bidirectional arithmetic and logical barrel shifter. The proposed design consists of the reversible Fredkin and Feynman gates. The Fredkin gate used in the design of reversible bidirectional arithmetic and logical barrel shifter can implement the 21 MUX with minimum quantum cost, minimum number of ancilla bits and minimum number of garbage outputs while the Feynman gate is used to avoid the fanout as fanout is not allowed in the reversible logic. The design is evaluated in terms of number of garbage outputs, quantum cost and number of ancilla bits.

Original languageEnglish
Title of host publication2011 11th IEEE International Conference on Nanotechnology, NANO 2011
Pages463-468
Number of pages6
DOIs
StatePublished - 2011
Event2011 11th IEEE International Conference on Nanotechnology, NANO 2011 - Portland, OR, United States
Duration: Aug 15 2011Aug 19 2011

Publication series

NameProceedings of the IEEE Conference on Nanotechnology
ISSN (Print)1944-9399
ISSN (Electronic)1944-9380

Conference

Conference2011 11th IEEE International Conference on Nanotechnology, NANO 2011
Country/TerritoryUnited States
CityPortland, OR
Period8/15/118/19/11

ASJC Scopus subject areas

  • Bioengineering
  • Electrical and Electronic Engineering
  • Materials Chemistry
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Design of a reversible bidirectional barrel shifter'. Together they form a unique fingerprint.

Cite this