Design of a reversible floating-point adder architecture

Michael Nachtigal, Himanshu Thapliyal, Nagarajan Ranganathan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Scopus citations

Abstract

The study of reversible circuits holds great promise for emerging technologies. Reversible circuits offer the possibility for great reductions in power consumption, and quantum computers will require logically reversible digital circuits. Many different reversible implementations of logical and arithmetic units have been proposed in the literature, but very few reversible floating-point designs exist. Floating-point operations are needed very frequently in nearly all computing disciplines, and studies have shown floating-point addition to be the most oft used floating-point operation. In this paper we present for the first time a reversible floating-point adder that closely follows the IEEE754 specification for binary floating-point arithmetic. Our design requires reversible designs of a controlled swap unit, a subtracter, an alignment unit, signed integer representation conversion units, an integer adder, a normalization unit, and a rounding unit. We analyze these major components in terms of quantum cost, garbage outputs, and constant inputs.

Original languageEnglish
Title of host publication2011 11th IEEE International Conference on Nanotechnology, NANO 2011
Pages451-456
Number of pages6
DOIs
StatePublished - 2011
Event2011 11th IEEE International Conference on Nanotechnology, NANO 2011 - Portland, OR, United States
Duration: Aug 15 2011Aug 19 2011

Publication series

NameProceedings of the IEEE Conference on Nanotechnology
ISSN (Print)1944-9399
ISSN (Electronic)1944-9380

Conference

Conference2011 11th IEEE International Conference on Nanotechnology, NANO 2011
Country/TerritoryUnited States
CityPortland, OR
Period8/15/118/19/11

Keywords

  • Reversible logic
  • addition
  • arithmetic
  • floating-point
  • quantum computing

ASJC Scopus subject areas

  • Bioengineering
  • Electrical and Electronic Engineering
  • Materials Chemistry
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Design of a reversible floating-point adder architecture'. Together they form a unique fingerprint.

Cite this