Abstract
In the aftermath of a large-scale disaster, such as an earthquake, existing telecommunication (e.g., cellular towers) and other public infrastructures (e.g., power lines, roads, etc.) are often severely damaged. This prevents the seamless exchange of situational awareness and rescue/relief based information between the volunteers, shelter points, and the coordination center. A temporary communication infrastructure utilizing smartphones, communication towers, drones, smart badges, etc., commonly referred to as network resources, can be formed, which promises to bridge the communication gap between various stakeholders in the disaster area and enable timely information exchange between them. However, the efficacy of such networks is often challenged by the limited availability of network resources in the disaster area. To address this issue, in this paper, we propose to design, develop, and test a novel strategy that intelligently deploys the limited network resources in the disaster area, and thus, creates an efficient temporary communication infrastructure in such resource-constrained post-disaster situations. We formulate the network resource deployment (ResDep) problem as an integer linear programming optimization problem and show that it is NP-Hard. Next, we propose a near-optimal polynomial-time heuristic solution for solving it. Our extensive simulation study on top of ONE simulator and proof-of-concept pilot deployment study, both based on our university, National Institute of Technology — Durgapur, India, reveal that the proposed heuristic performs nearly as well as that of the optimal solution (computed using Gurobi optimizer), and outperforms its variant and baseline approaches when compared in terms of end-to-end network latency and message delivery.
Original language | English |
---|---|
Pages (from-to) | 54-68 |
Number of pages | 15 |
Journal | Computer Communications |
Volume | 164 |
DOIs | |
State | Published - Dec 1 2020 |
Bibliographical note
Funding Information:This publication is an outcome of a project entitled “Developing ICT-based kiosks for post-disaster situational information management using opportunistic networking framework”, sponsored by Dept. of Higher Education, Science & Technology and Biotechnology (DHESTBT) , Government of West Bengal, India.
Publisher Copyright:
© 2020 Elsevier B.V.
Keywords
- Delay tolerant network
- Disaster management
- Post-disaster environments
- Resource allocation
ASJC Scopus subject areas
- Computer Networks and Communications