TY - JOUR
T1 - Determinants of skin sympathetic nerve responses to isometric exercise
AU - Wilson, Thad E.
AU - Dyckman, Damian J.
AU - Ray, Chester A.
PY - 2006/3
Y1 - 2006/3
N2 - Exercise-induced increases in skin sympathetic nerve activity (SSNA) are similar between isometric handgrip (IHG) and leg extension (IKE) performed at 30% of maximal voluntary contraction (MVC). However, the precise effect of exercise intensity and level of fatigue on this relationship is unclear. This study tested the following hypotheses: 1) exercise intensity and fatigue level would not affect the magnitude of exercise-induced increase in SSNA between IHG and IKE, and 2) altering IHG muscle mass would also not affect the magnitude of exercise-induced increase in SSNA. In protocol 1, SSNA (peroneal microneurography) was measured during baseline and during the initial and last 30 s of isometric exercise to volitional fatigue in 12 subjects who randomly performed IHG and IKE bouts at 15, 30, and 45% MVC. In protocol 2, SSNA was measured in eight subjects who performed one-arm IHG at 30% MVC with the addition of IHG of the contralateral arm in 10-s intervals for 1 min. Exercise intensity significantly increased SSNA responses during the first 30 s of IHG (34 ± 13, 70 ± 11, and 92 ± 13% change from baseline) and IKE (30 ± 17, 69 ± 12, and 76 ± 13% change from baseline) for 15, 30, and 45% MVC. During the last 30 s of exercise to volitional fatigue, there were no significant differences in SSNA between exercise intensities or limb. SSNA did not significantly change between one-arm and two-arm IHG. Combined, these data indicate that exercise-induced increases in SSNA are intensity dependent in the initial portion of isometric exercise, but these differences are eliminated with the development of fatigue. Moreover, the magnitude of exercise-induced increase in SSNA responses is not dependent on either muscle mass involved or exercising limb.
AB - Exercise-induced increases in skin sympathetic nerve activity (SSNA) are similar between isometric handgrip (IHG) and leg extension (IKE) performed at 30% of maximal voluntary contraction (MVC). However, the precise effect of exercise intensity and level of fatigue on this relationship is unclear. This study tested the following hypotheses: 1) exercise intensity and fatigue level would not affect the magnitude of exercise-induced increase in SSNA between IHG and IKE, and 2) altering IHG muscle mass would also not affect the magnitude of exercise-induced increase in SSNA. In protocol 1, SSNA (peroneal microneurography) was measured during baseline and during the initial and last 30 s of isometric exercise to volitional fatigue in 12 subjects who randomly performed IHG and IKE bouts at 15, 30, and 45% MVC. In protocol 2, SSNA was measured in eight subjects who performed one-arm IHG at 30% MVC with the addition of IHG of the contralateral arm in 10-s intervals for 1 min. Exercise intensity significantly increased SSNA responses during the first 30 s of IHG (34 ± 13, 70 ± 11, and 92 ± 13% change from baseline) and IKE (30 ± 17, 69 ± 12, and 76 ± 13% change from baseline) for 15, 30, and 45% MVC. During the last 30 s of exercise to volitional fatigue, there were no significant differences in SSNA between exercise intensities or limb. SSNA did not significantly change between one-arm and two-arm IHG. Combined, these data indicate that exercise-induced increases in SSNA are intensity dependent in the initial portion of isometric exercise, but these differences are eliminated with the development of fatigue. Moreover, the magnitude of exercise-induced increase in SSNA responses is not dependent on either muscle mass involved or exercising limb.
KW - And microneurography
KW - Skin blood flow
KW - Sweat rate
UR - http://www.scopus.com/inward/record.url?scp=33645831770&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33645831770&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00579.2005
DO - 10.1152/japplphysiol.00579.2005
M3 - Article
C2 - 16282434
AN - SCOPUS:33645831770
SN - 8750-7587
VL - 100
SP - 1043
EP - 1048
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 3
ER -