Abstract
Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross section predictions. A prominent example is the isovector axial nucleon form factor, FA(q2), which controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous extractions of FA from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a model-independent, and systematically improvable, representation of FA. A complete error budget for the nucleon isovector axial radius leads to rA2=0.46(22) fm2, with a much larger uncertainty than determined in the original analyses. The quasielastic neutrino-neutron cross section is determined as σ(νμn→μ-p)|Eν=1 GeV=10.1(0.9)×10-39 cm2. The propagation of nucleon-level constraints and uncertainties to nuclear cross sections is illustrated using MINERvA data and the GENIE event generator. These techniques can be readily extended to other amplitudes and processes.
Original language | English |
---|---|
Article number | 113015 |
Journal | Physical Review D |
Volume | 93 |
Issue number | 11 |
DOIs | |
State | Published - Jun 23 2016 |
Bibliographical note
Publisher Copyright:© 2016 American Physical Society.
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)