Develop a high-throughput screening method to identify c-p4h1 (Collagen prolyl 4-hydroxylase 1) inhibitors from fda-approved chemicals

Shike Wang, Kuo Hao Lee, Nathalia Victoria Araujo, Chang Guo Zhan, Vivek M. Rangnekar, Ren Xu

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Collagen prolyl 4-hydroxylase 1 (C-P4H1) is an α-ketoglutarate (α-KG)-dependent dioxygenase that catalyzes 4-hydroxylation of proline on collagen. C-P4H1-induced prolyl hydroxylation is required for proper collagen deposition and cancer metastasis. Therefore, targeting C-P4H1 is considered a potential therapeutic strategy for collagen-related cancer progression and metastasis. However, no C-P4H1 inhibitors are available for clinical testing, and the high content assay is currently not available for C-P4H1 inhibitor screening. In the present study, we developed a high-throughput screening assay by quantifying succinate, a byproduct of C-P4H-catalyzed hydroxylation. C-P4H1 is the major isoform of collagen prolyl 4-hydroxylases (CP4Hs) that contributes the majority prolyl 4-hydroxylase activity. Using C-P4H1 tetramer purified from the eukaryotic expression system, we showed that the Succinate-GloTM Hydroxylase assay was more sensitive for measuring C-P4H1 activity compared with the hydroxyproline colorimetric assay. Next, we performed high-throughput screening with the FDA-approved drug library and identified several new C-P4H1 inhibitors, including Silodosin and Ticlopidine. Silodosin and Ticlopidine inhibited C-P4H1 activity in a dose-dependent manner and suppressed collagen secretion and tumor invasion in 3D tissue culture. These C-P4H1 inhibitors provide new agents to test clinical potential of targeting C-P4H1 in suppressing cancer progression and metastasis.

Original languageEnglish
Article number6613
Pages (from-to)1-13
Number of pages13
JournalInternational Journal of Molecular Sciences
Volume21
Issue number18
DOIs
StatePublished - Sep 2 2020

Bibliographical note

Funding Information:
Funding: This study was supported by funding from NIH (1R01CA207772, and 1R01CA215095 to R.X.).

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Cancer invasion
  • Collagen
  • Extracellular matrix
  • High-throughput screening
  • Prolyl hydroxylation

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Develop a high-throughput screening method to identify c-p4h1 (Collagen prolyl 4-hydroxylase 1) inhibitors from fda-approved chemicals'. Together they form a unique fingerprint.

Cite this