Abstract
We develop a two-stage diagnostic classification system for psychotic disorders using an extremely randomized trees machine learning algorithm. Item bank was developed from clinician-rated items drawn from an inpatient and outpatient sample. In stage 1, we differentiate schizophrenia and schizoaffective disorder from depression and bipolar disorder (with psychosis). In stage 2 we differentiate schizophrenia from schizoaffective disorder. Out of sample classification accuracy, determined by area under the receiver operator characteristic (ROC) curve, was outstanding for stage 1 (Area under the ROC curve (AUC) = 0.93, 95% confidence interval (CI) = 0.89, 0.94), and excellent for stage 2 (AUC = 0.86, 95% CI = 0.83, 0.88). This is achieved based on an average of 5 items for stage 1 and an average of 6 items for stage 2, out of a bank of 73 previously validated items.
Original language | English |
---|---|
Pages (from-to) | 116-121 |
Number of pages | 6 |
Journal | Schizophrenia Research |
Volume | 245 |
DOIs | |
State | Published - Jul 2022 |
Bibliographical note
Publisher Copyright:© 2021 Elsevier B.V.
Keywords
- Computerized adaptive diagnosis
- Extremely randomized decision trees
- Measurement
- Psychosis
ASJC Scopus subject areas
- Psychiatry and Mental health
- Biological Psychiatry