Development of PVDF membrane nanocomposites via various functionalization approaches for environmental applications

Douglas M. Davenport, Minghui Gui, Lindell R. Ormsbee, Dibakar Bhattacharyya

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Membranes are finding wide applications in various fields spanning biological, water, and energy areas. Synthesis of membranes to provide tunable flux, metal sorption, and catalysis has been done through pore functionalization of microfiltration (MF) type membranes with responsive behavior. This methodology provides an opportunity to improve synthetic membrane performance via polymer fabrication and surface modification. By optimizing the polymer coagulation conditions in phase inversion fabrication, spongy polyvinylidene fluoride (PVDF) membranes with high porosity and large internal pore volume were created in lab and full scale. This robust membrane shows a promising mechanical strength as well as high capacity for loading of adsorptive and catalytic materials. By applying surface modification techniques, synthetic membranes with different functionality (carboxyl, amine, and nanoparticle-based) were obtained. These functionalities provide an opportunity to fine-tune the membrane surface properties such as charge and reactivity. The incorporation of stimuli-responsive acrylic polymers (polyacrylic acid or sodium polyacrylate) in membrane pores also results in tunable pore size and ion-exchange capacity. This provides the added benefits of adjustable membrane permeability and metal capture efficiency. The equilibrium and dynamic binding capacity of these functionalized spongy membranes were studied via calcium ion-exchange. Iron/palladium catalytic nanoparticles were immobilized in the polymer matrix in order to perform the challenging degradation of the environmental pollutant trichloroethylene (TCE).

Original languageEnglish
Article number32
JournalPolymers
Volume8
Issue number2
DOIs
StatePublished - 2016

Bibliographical note

Publisher Copyright:
© 2016 by the authors.

Keywords

  • Free radical polymerization
  • Phase inversion
  • Polyelectrolyte
  • Water remediation

ASJC Scopus subject areas

  • General Chemistry
  • Polymers and Plastics

Fingerprint

Dive into the research topics of 'Development of PVDF membrane nanocomposites via various functionalization approaches for environmental applications'. Together they form a unique fingerprint.

Cite this