Abstract
Achieving carbon neutrality requires efficient, energy-saving carbon dioxide capture technologies. Conventional monoethanolamine (MEA) solutions suffer from high energy consumption, volatility, and degradation. This study develops a diamine-based water-lean solvent, consisting of 2-ethylhexylamine (EHA), N,N-dimethylethylenediamine (DMEDA), and dimethyl sulfoxide (DMSO), and evaluates its CO2 capture performance. The EHA-based solvent achieved a CO2 absorption capacity of 3.7 mol/kg and a rate of 1.83 mol/kg·s, outperforming Aminoethyl Ethanolamine (AEEA)-based and MEA-H2O solutions. Regeneration energy was reduced by 65 %, with activation energies of 31.2 kJ/mol (EHA) and 33.15 kJ/mol (AEEA). Molecular dynamics (MD) simulations revealed enhanced CO2 diffusion and solvent stability due to optimized bond length distribution. DMSO improved mass transfer, mitigated viscosity resistance, and stabilized carbamate formation. Fourier transform infrared (FTIR) spectroscopy confirmed that water-lean systems favored carbamate selectivity over bicarbonate formation. These findings demonstrate the industrial potential of EHA-based solvents for high-emission scenarios, offering reduced energy use and improved process stability. This work provides a framework for designing efficient, low-viscosity solvents for sustainable CO2 capture.
Original language | English |
---|---|
Article number | 136039 |
Journal | Energy |
Volume | 324 |
DOIs | |
State | Published - Jun 1 2025 |
Bibliographical note
Publisher Copyright:© 2025 Elsevier Ltd
Keywords
- Absorption performance
- CO capture
- Diamine-based solvent
- Molecular dynamics simulations
- Water-lean absorbents
ASJC Scopus subject areas
- Civil and Structural Engineering
- Modeling and Simulation
- Renewable Energy, Sustainability and the Environment
- Building and Construction
- Fuel Technology
- Energy Engineering and Power Technology
- Pollution
- Mechanical Engineering
- General Energy
- Management, Monitoring, Policy and Law
- Industrial and Manufacturing Engineering
- Electrical and Electronic Engineering