Differential gene expression associated with postnatal equine articular cartilage maturation

Michael J. Mienaltowski, Liping Huang, Arnold J. Stromberg, James N. MacLeod

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Background. Articular cartilage undergoes an important maturation process from neonate to adult that is reflected by alterations in matrix protein organization and increased heterogeneity of chondrocyte morphology. In the horse, these changes are influenced by exercise during the first five months of postnatal life. Transcriptional profiling was used to evaluate changes in articular chondrocyte gene expression during postnatal growth and development. Methods. Total RNA was isolated from the articular cartilage of neonatal (0-10 days) and adult (4-5 years) horses, subjected to one round of linear RNA amplification, and then applied to a 9,367-element equine-specific cDNA microarray. Comparisons were made with a dye-swap experimental design. Microarray results for selected genes (COL2A1, COMP, P4HA1, TGFB1, TGFBR3, TNC) were validated by quantitative polymerase chain reaction (qPCR). Results. Fifty-six probe sets, which represent 45 gene products, were up-regulated (p < 0.01) in chondrocytes of neonatal articular cartilage relative to chondrocytes of adult articular cartilage. Conversely, 586 probe sets, which represent 499 gene products, were up-regulated (p < 0.01) in chondrocytes of adult articular cartilage relative to chondrocytes of neonatal articular cartilage. Collagens, matrix-modifying enzymes, and provisional matrix non-collagenous proteins were expressed at higher levels in the articular cartilage of newborn foals. Those genes with increased mRNA abundance in adult chondrocytes included leucine-rich small proteoglycans, matrix assembly, and cartilage maintenance proteins. Conclusion. Differential expression of genes encoding matrix proteins and matrix-modifying enzymes between neonates and adults reflect a cellular maturation process in articular chondrocytes. Up-regulated transcripts in neonatal cartilage are consistent with growth and expansion of the articular surface. Expression patterns in mature articular cartilage indicate a transition from growth to homeostasis, and tissue function related to withstanding shear and weight-bearing stresses.

Original languageEnglish
Article number149
JournalBMC Musculoskeletal Disorders
Volume9
DOIs
StatePublished - 2008

Bibliographical note

Funding Information:
Dr. Mark Band and the W.M. Keck Center for Comparative and Functional Genomics at the University of Illinois are graciously acknowledged. We also thank Dr. David Horohov for the gift of the TGFβ1 primer/probe set and use of his ABI Systems 7900HT Fast Real-Time PCR System. Financial support was received from the Gluck Equine Research Foundation, The Geoffrey C. Hughes Foundation, The Morris Animal Foundation (D06-EQ409), and the NIH (KY-INBRE P20 RR16481).

ASJC Scopus subject areas

  • Rheumatology
  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Differential gene expression associated with postnatal equine articular cartilage maturation'. Together they form a unique fingerprint.

Cite this