TY - JOUR
T1 - Dim light at night unmasks sex-specific differences in circadian and autonomic regulation of cardiovascular physiology.
AU - Prabhat, Abhilash
AU - Sami, Dema
AU - Ehlman, Allison
AU - Stumpf, Isabel G
AU - Seward, Tanya
AU - Su, Wen
AU - Gong, Ming
AU - Schroder, Elizabeth
AU - Delisle, Brian
PY - 2024/9/27
Y1 - 2024/9/27
N2 - Shift work and artificial light at night disrupt the entrainment of endogenous circadian rhythms in physiology and behavior to the day-night cycle. We hypothesized that exposure to dim light at night (dLAN) disrupts feeding rhythms, leading to sex-specific changes in autonomic signaling and day-night heart rate and blood pressure rhythms. Compared to mice housed in 12-hour light/12-hour dark cycles, mice exposed to dLAN showed reduced amplitudes in day-night feeding, heart rate, and blood pressure rhythms. In female mice, dLAN reduced the amplitude of day-night cardiovascular rhythms by decreasing the relative sympathetic regulation at night, while in male mice, it did so by increasing the relative sympathetic regulation during the daytime. Time-restricted feeding to the dim light cycle reversed these autonomic changes in both sexes. We conclude that dLAN induces sex-specific changes in autonomic regulation of heart rate and blood pressure, and time-restricted feeding may represent a chronotherapeutic strategy to mitigate the cardiovascular impact of light at night.
AB - Shift work and artificial light at night disrupt the entrainment of endogenous circadian rhythms in physiology and behavior to the day-night cycle. We hypothesized that exposure to dim light at night (dLAN) disrupts feeding rhythms, leading to sex-specific changes in autonomic signaling and day-night heart rate and blood pressure rhythms. Compared to mice housed in 12-hour light/12-hour dark cycles, mice exposed to dLAN showed reduced amplitudes in day-night feeding, heart rate, and blood pressure rhythms. In female mice, dLAN reduced the amplitude of day-night cardiovascular rhythms by decreasing the relative sympathetic regulation at night, while in male mice, it did so by increasing the relative sympathetic regulation during the daytime. Time-restricted feeding to the dim light cycle reversed these autonomic changes in both sexes. We conclude that dLAN induces sex-specific changes in autonomic regulation of heart rate and blood pressure, and time-restricted feeding may represent a chronotherapeutic strategy to mitigate the cardiovascular impact of light at night.
M3 - Article
C2 - 39333678
JO - Communications Biology
JF - Communications Biology
M1 - PMIC: 39333678
ER -