Abstract
The present work provides an analysis of turbulent channel flows with regularized wall roughness for a constant frictional Reynolds number of approximately 720 leading to a collapse in the turbulent quantities away from the wall (following Townsend’s hypothesis). The aim of this study is to investigate the effects of surface roughness on the characteristics of turbulent flows, quantify these effects, and identify relevant roughness parameters by modifying the roughness shapes previously considered in Ganju et al.1 The effects of superimposing two roughness wavelengths as well as adding 3D effects is investigated. Three different geometry and flow configurations were analyzed: (1) a superposition of two 2D roughness profiles, (2) adding a cross-flow component in the mean flow for a 2D roughness profile, and (3) a 3D roughness profile with mean flow velocity components in streamwise and spanwise directions. Direct numerical simulations are employed with sub-Kolmogorov scale grid resolution in order to eliminate modeling assumptions and extract detailed information about the turbulent flow characteristics in the presence of roughness. In particular, the effects of wall roughness on mean velocity profiles, Reynolds stresses, as well as production and dissipation of turbulent kinetic energy are investigated.
Original language | English |
---|---|
Title of host publication | AIAA Aviation 2019 Forum |
Pages | 1-22 |
Number of pages | 22 |
DOIs | |
State | Published - 2019 |
Event | AIAA Aviation 2019 Forum - Dallas, United States Duration: Jun 17 2019 → Jun 21 2019 |
Publication series
Name | AIAA Aviation 2019 Forum |
---|
Conference
Conference | AIAA Aviation 2019 Forum |
---|---|
Country/Territory | United States |
City | Dallas |
Period | 6/17/19 → 6/21/19 |
Bibliographical note
Publisher Copyright:© 2019, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
ASJC Scopus subject areas
- Computer Science Applications
- Electrical and Electronic Engineering
- Aerospace Engineering