Discriminative Boosting Algorithm for Diversified Front-End Phonotactic Language Recognition

Wei Wei Liu, Meng Cai, Wei Qiang Zhang, Jia Liu, Michael T. Johnson

Research output: Contribution to journalArticlepeer-review


Currently, phonotactic spoken language recognition (SLR) and acoustic SLR systems are widely used language recognition systems. Parallel phone recognition followed by vector space modeling (PPRVSM) is one typical phonotactic system for spoken language recognition. To achieve better performance, researchers assumed to extract more complementary information of the training data using phone recognizers trained for multiple language-specific phone recognizers, different acoustic models and acoustic features. These methods achieve good performance but usually compute at high computational cost and only using complementary information of the training data. In this paper, we explore a novel approach to discriminative vector space model (VSM) training by using a boosting framework to use the discriminative information of test data effectively, in which an ensemble of VSMs is trained sequentially. The effectiveness of our boosting variation comes from the emphasis on working with the high confidence test data to achieve discriminatively trained models. Our variant of boosting also includes utilizing original training data in VSM training. The discriminative boosting algorithm (DBA) is applied to the National Institute of Standards and Technology (NIST) language recognition evaluation (LRE) 2009 task and show performance improvements. The experimental results demonstrate that the proposed DBA shows 1.8 %, 11.72 % and 15.35 % relative reduction for 30s, 10s and 3s test utterances in equal error rate (EER) than baseline system.

Original languageEnglish
Pages (from-to)229-239
Number of pages11
JournalJournal of Signal Processing Systems
Issue number2
StatePublished - Feb 1 2016

Bibliographical note

Publisher Copyright:
© 2015, Springer Science+Business Media New York.


  • Discriminative boosting algorithm (DBA)
  • Language recognition

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Theoretical Computer Science
  • Signal Processing
  • Information Systems
  • Modeling and Simulation
  • Hardware and Architecture


Dive into the research topics of 'Discriminative Boosting Algorithm for Diversified Front-End Phonotactic Language Recognition'. Together they form a unique fingerprint.

Cite this