TY - JOUR
T1 - DNase I disinhibition is predominantly associated with actin hyperpolymerization after traumatic brain injury
AU - Bareyre, Florence M.
AU - Raghupathi, Ramesh
AU - Saatman, Kathryn E.
AU - McIntosh, Tracy K.
PY - 2001
Y1 - 2001
N2 - To elucidate a role for the cytoskeletal protein actin in post-traumatic apoptotic cell death, the ability of actin-containing tissue extracts to inhibit exogenous DNase I was evaluated. In addition, cortical, hippocampal and thalamic extracts were examined for caspase-mediated actin cleavage and changes in actin polymerization state. Rats were anesthetized, subjected to lateral fluid percussion brain injury of moderate severity, and euthanized at 1 h, 6 h, 24 h, 1 week or 3 weeks post-injury (n = 3 per time-point). Tissue extracts from all brain regions of sham (uninjured) animals inhibited exogenous DNase I activity to a significant extent. However, inhibition of DNase I was significantly reduced at 1 h and 6 h in the injured hippocampus, and at 1 h, 6 h and 3 weeks in the thalamus. DNase I in cortical extracts of all injured animals was inhibited to a similar extent as that in uninjured animals. Actin fragments consistent with caspase-mediated proteolysis were observed in immunoblots of the injured hippocampus and thalamus at 1 h and 24 h, respectively, and were present up to 3 weeks post-injury. Transient actin hyperpolymerization was observed at 1 and 6 h post-injury in the thalamus and hippocampus, while actin depolymerization was observed at 1 and 3 weeks in the cortex and thalamus. Collectively our data suggest that DNase I disinhibition following brain trauma is associated predominantly with actin hyperpolymerization but also with actin depolymerization and concomitant caspase-mediated actin proteolysis.
AB - To elucidate a role for the cytoskeletal protein actin in post-traumatic apoptotic cell death, the ability of actin-containing tissue extracts to inhibit exogenous DNase I was evaluated. In addition, cortical, hippocampal and thalamic extracts were examined for caspase-mediated actin cleavage and changes in actin polymerization state. Rats were anesthetized, subjected to lateral fluid percussion brain injury of moderate severity, and euthanized at 1 h, 6 h, 24 h, 1 week or 3 weeks post-injury (n = 3 per time-point). Tissue extracts from all brain regions of sham (uninjured) animals inhibited exogenous DNase I activity to a significant extent. However, inhibition of DNase I was significantly reduced at 1 h and 6 h in the injured hippocampus, and at 1 h, 6 h and 3 weeks in the thalamus. DNase I in cortical extracts of all injured animals was inhibited to a similar extent as that in uninjured animals. Actin fragments consistent with caspase-mediated proteolysis were observed in immunoblots of the injured hippocampus and thalamus at 1 h and 24 h, respectively, and were present up to 3 weeks post-injury. Transient actin hyperpolymerization was observed at 1 and 6 h post-injury in the thalamus and hippocampus, while actin depolymerization was observed at 1 and 3 weeks in the cortex and thalamus. Collectively our data suggest that DNase I disinhibition following brain trauma is associated predominantly with actin hyperpolymerization but also with actin depolymerization and concomitant caspase-mediated actin proteolysis.
KW - Apoptosis
KW - Caspase
KW - DNA fragmentation
KW - Head injury
KW - Rats
UR - http://www.scopus.com/inward/record.url?scp=0035076447&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035076447&partnerID=8YFLogxK
U2 - 10.1046/j.1471-4159.2001.00215.x
DO - 10.1046/j.1471-4159.2001.00215.x
M3 - Article
C2 - 11279273
AN - SCOPUS:0035076447
SN - 0022-3042
VL - 77
SP - 173
EP - 181
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 1
ER -