Does fungal endophyte infection improve tall fescue's growth response to fire and water limitation?

Sarah L. Hall, Rebecca L. McCulley, Robert J. Barney, Timothy D. Phillips

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


Invasive species may owe some of their success in competing and co-existing with native species to microbial symbioses they are capable of forming. Tall fescue is a cool-season, non-native, invasive grass capable of co-existing with native warm-season grasses in North American grasslands that frequently experience fire, drought, and cold winters, conditions to which the native species should be better-adapted than tall fescue. We hypothesized that tall fescue's ability to form a symbiosis with Neotyphodium coenophialum, an aboveground fungal endophyte, may enhance its environmental stress tolerance and persistence in these environments. We used a greenhouse experiment to examine the effects of endophyte infection (E+ vs. E-), prescribed fire (1 burn vs. 2 burn vs. unburned control), and watering regime (dry vs. wet) on tall fescue growth. We assessed treatment effects for growth rates and the following response variables: total tiller length, number of tillers recruited during the experiment, number of reproductive tillers, tiller biomass, root biomass, and total biomass. Water regime significantly affected all response variables, with less growth and lower growth rates observed under the dry water regime compared to the wet. The burn treatments significantly affected total tiller length, number of reproductive tillers, total tiller biomass, and total biomass, but treatment differences were not consistent across parameters. Overall, fire seemed to enhance growth. Endophyte status significantly affected total tiller length and tiller biomass, but the effect was opposite what we predicted (E->E+). The results from our experiment indicated that tall fescue was relatively tolerant of fire, even when combined with dry conditions, and that the fungal endophyte symbiosis was not important in governing this ecological ability. The persistence of tall fescue in native grassland ecosystems may be linked to other endophyte-conferred abilities not measured here (e.g., herbivory release) or may not be related to this plant-microbial symbiosis.

Original languageEnglish
Article numbere86904
JournalPLoS ONE
Issue number1
StatePublished - Jan 31 2014

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Does fungal endophyte infection improve tall fescue's growth response to fire and water limitation?'. Together they form a unique fingerprint.

Cite this