Double-exclusive liquid repellency (double-ELR): An enabling technology for rare phenotype analysis

Chao Li, Jiaquan Yu, Paxton Paine, Duane S. Juang, Scott M. Berry, David J. Beebe

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Double-exclusive liquid repellency (double-ELR) is an extreme wettability phenomenon in which adjacent regions selectively and completely repel immiscible liquids with different surface chemistries on a non-textured substrate (i.e., a substrate in absence of micro/nano-structures). Under double-ELR conditions, each liquid exhibits no physical contact (contact angle of 180°) with its non-preferred surface chemistry, thus enabling complete partitioning of adjacent fluidic volumes (e.g., between water and oil). This enables a new type of cell culture-based assay, where cell loss from common failure modes (e.g., biofouling from inadvertent cell adhesion, detrimental moisture loss/gain, and liquid handling dead volumes) is significantly mitigated. Importantly, the principles of double-ELR were leveraged to achieve underoil sweep patterning, a no-loss, robust and high-throughput distribution of sub-microliter volumes of aqueous media (and cells). In addition to high-efficiency distribution via sweep patterning, double-ELR can be used to construct "modular" (i.e., easily implemented and/or linked together with spatial and temporal control) higher-order architectures for in vitro imitation of physiologically relevant microenvironments that are of particular interest within the cell assay community, including multi-phenotype cultures with excellent spatial and temporal control, three-dimensional layered multi-phenotype cultures, cultures with selective mechanical cues of extracellular matrix (i.e., collagen fiber alignment), and spheroid cultures. Together, these features of double-ELR uniquely facilitate culture and high content analysis of limited cellular samples (e.g., a few hundred to a few thousand cells).

Original languageEnglish
Pages (from-to)2710-2719
Number of pages10
JournalLab on a Chip
Issue number18
StatePublished - Sep 21 2018

Bibliographical note

Publisher Copyright:
© 2018 The Royal Society of Chemistry.

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • General Chemistry
  • Biomedical Engineering


Dive into the research topics of 'Double-exclusive liquid repellency (double-ELR): An enabling technology for rare phenotype analysis'. Together they form a unique fingerprint.

Cite this