Dynamic autoregulation of cutaneous circulation: Differential control in glabrous versus nonglabrous skin

Thad E. Wilson, Rong Zhang, Benjamin D. Levine, Craig G. Crandall

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

The purpose of this project was to test the hypothesis that, independent of neural control, glabrous and nonglabrous cutaneous vasculature is capable of autoregulating blood flow. In 10 subjects, spectral and transfer function analyses of arterial pressure and skin blood flow (laser-Doppler flowmetry) from glabrous (palm) and nonglabrous (forearm) regions were performed under three conditions: baseline, ganglionic blockade via intravenous trimethaphan administration, and trimethaphan plus oscillatory lower body negative pressure (LBNP; -5 to -10 mmHg) from 0.05 to 0.07 Hz. Oscillatory LBNP was applied to regenerate mean arterial pressure variability that was abolished by ganglionic blockade. Ganglionic blockade was verified by an absence of a heart rate response to a Valsalva maneuver. Spectral power and transfer function gain between blood pressure and skin blood flow were calculated in this oscillatory frequency range (0.05-0.07 Hz). Within this frequency range, ganglionic blockade significantly decreased spectral power of blood flow in both the forearm and palm, whereas regeneration of arterial blood pressure oscillations significantly increased spectral power of forearm blood flow but not palm blood flow. During oscillatory LBNP, transfer function gain between blood pressure and skin blood flow was significantly elevated at the forearm (0.28 ± 0.03 to 0.53 ± 0.02 flux units/mmHg; P < 0.05) but was reduced at the palm (4.7 ± 0.5 to 1.2 ± 0.1 flux units/mmHg; P < 0.05). These data show that independent of neural control of blood flow, glabrous skin has the ability to buffer blood pressure oscillations and demonstrates a degree of dynamic autoregulation. Conversely, these data suggest that nonglabrous skin has diminished dynamic autoregulatory capabilities.

Original languageEnglish
Pages (from-to)H385-H391
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume289
Issue number1 58-1
DOIs
StatePublished - Jul 2005

Funding

FundersFunder number
National Institute of General Medical SciencesR01GM068865

    Keywords

    • Ganglionic blockade
    • Laser-doppler flowmetry
    • Spectral analysis

    ASJC Scopus subject areas

    • Physiology
    • Cardiology and Cardiovascular Medicine
    • Physiology (medical)

    Fingerprint

    Dive into the research topics of 'Dynamic autoregulation of cutaneous circulation: Differential control in glabrous versus nonglabrous skin'. Together they form a unique fingerprint.

    Cite this