Dynamics of the quasielastic16O(e,e′p) reaction at Q 2≈0.8 (GeV/c)2

K. G. Fissum, M. Liang, B. D. Anderson, K. A. Aniol, L. Auerbach, F. T. Baker, J. Berthot, W. Bertozzi, P. Y. Bertin, L. Bimbot, W. U. Boeglin, E. J. Brash, V. Breton, H. Breuer, E. Burtin, J. R. Calarco, L. S. Cardman, G. D. Cates, C. Cavata, C. C. ChangJ. P. Chen, E. Cisbani, D. S. Dale, C. W. de Jager, R. de Leo, A. Deur, B. Diederich, P. Djawotho, J. Domingo, J. E. Ducret, M. B. Epstein, L. A. Ewell, J. M. Finn, H. Fonvieille, B. Frois, S. Frullani, J. Gao, F. Garibaldi, A. Gasparian, S. Gilad, R. Gilman, A. Glamazdin, C. Glashausser, J. Gomez, V. Gorbenko, T. Gorringe, F. W. Hersman, R. Holmes, M. Holtrop, N. d'Hose, C. Howell, G. M. Huber, C. E. Hyde-Wright, M. Iodice, S. Jaminion, M. K. Jones, K. Joo, C. Jutier, W. Kahl, S. Kato, J. J. Kelly, S. Kerhoas, M. Khandaker, M. Khayat, K. Kino, W. Korsch, L. Kramer, K. S. Kumar, G. Kumbartzki, G. Laveissière, A. Leone, J. J. LeRose, L. Levchuk, R. A. Lindgren, N. Liyanage, G. J. Lolos, R. W. Lourie, R. Madey, K. Maeda, S. Malov, D. M. Manley, D. J. Margaziotis, P. Markowitz, J. Martino, J. S. McCarthy, K. McCormick, J. McIntyre, R. L.J. van der Meer, Z. E. Meziani, R. Michaels, J. Mougey, S. Nanda, D. Neyret, E. A.J.M. Offermann, Z. Papandreou, C. F. Perdrisat, R. Perrino, G. G. Petratos, S. Platchkov, R. Pomatsalyuk, D. L. Prout, V. A. Punjabi, T. Pussieux, G. Quéméner, R. D. Ransome, O. Ravel, Y. Roblin, R. Roche, D. Rowntree, G. A. Rutledge, P. M. Rutt, A. Saha, T. Saito, A. J. Sarty, A. Serdarevic-Offermann, T. P. Smith, A. Soldi, P. Sorokin, P. Souder, R. Suleiman, J. A. Templon, T. Terasawa, L. Todor, H. Tsubota, H. Ueno, P. E. Ulmer, G. M. Urciuoli, P. Vernin, S. van Verst, B. Vlahovic, H. Voskanyan, J. W. Watson, L. B. Weinstein, K. Wijesooriya, B. Wojtsekhowski, D. G. Zainea, V. Zeps, J. Zhao, Z. L. Zhou, J. M. Udías, J. R. Vignote, J. Ryckebusch, D. Debruyne

Research output: Contribution to journalArticlepeer-review

33 Scopus citations


The physics program in Hall A at Jefferson Lab commenced in the summer of 1997 with a detailed investigation of the 16O(e,e′p) reaction in quasielastic. constant (q,ω) kinematics at Q2≈0.8 (GeV/c)2, q ≈ 1 GeV/c, and ω≈445 MeV. Use of a self-calibrating, self-normalizing, thin-film waterfall target enabled a systematically rigorous measurement. Five-fold differential cross-section data for the removal of protons from the 1p-shell have been obtained for 0<p miss<350 MeV/c. Six-fold differential cross-section data for 0<Emiss<120 MeV were obtained for 0<pmiss<340 MeV/c. These results have been used to extract the ALT asymmetry and the RL, RT, RLT, and KL+TT effective response functions over a large range of Emiss and pmiss. Detailed comparisons of the 1p-shell data with Relativistic Distorted-Wave Impulse Approximation (RDWIA), Relativistic Optical-Model Eikonal Approximation (ROMEA). and Relativistic Multiple-Scattering Glauber Approximation (RMSGA) calculations indicate that two-body currents stemming from meson-exchange currents (MEC) and isobar currents (IC) are not needed to explain the data at this Q2. Further, dynamical relativistic effects are strongly indicated by the observed structure in ALT at pmiss≈300 MeV/c. For 25<Emiss<50 MeV and pmiss≈50 MeV/c. proton knockout from the 1s1/2-state dominates, and ROMEA calculations do an excellent job of explaining the data. However, as p miss increases, the single-particle behavior of the reaction is increasingly hidden by more complicated processes, and for 280<p miss<340 MeV/c, ROMEA calculations together with two-body currents stemming from MEC and IC account for the shape and transverse nature of the data, but only about half the magnitude of the measured cross section. For 50<Emiss<120 MeV and 145<pmiss<340 MeV/c, (e.e′pN) calculations which include the contributions of central and tensor correlations (two-nucleon correlations) together with MEC and IC (two-nucleon currents) account for only about half of the measured cross section. The kinematic consistency of the 1p-shell normalisation factors extracted from these data with respect to all available 16O(e, e′ p) data is also examined in detail. Finally, the Q2- dependence of the normalization factors is discussed.

Original languageEnglish
Article number034606
Pages (from-to)346061-3460630
Number of pages3114570
JournalPhysical Review C - Nuclear Physics
Issue number3
StatePublished - Sep 2004

Bibliographical note

Funding Information:
We acknowledge the outstanding support of the staff of the Accelerator and Physics Divisions at Jefferson Lab that made this experiment successful. We thank T. W. Donnelly and J. W. Van Orden for valuable discussions. This work was supported in part by the U. S. Department of Energy Contract No. DE-AC05-84ER40150 under which the Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility, other Department of Energy contracts, the National Science Foundation, the Swedish Research Council (VR), the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and Commissariat á l’Energie Atomique, and the Natural Sciences and Engineering Research Council of Canada.

ASJC Scopus subject areas

  • Nuclear and High Energy Physics


Dive into the research topics of 'Dynamics of the quasielastic16O(e,e′p) reaction at Q 2≈0.8 (GeV/c)2'. Together they form a unique fingerprint.

Cite this