Eco-friendly synthesis of Ag/CeO2 and CuO/CeO2 nanocomposites using Curcuma longa extract and assessment of their antioxidant, antifungal, and cytotoxic activities

Khaled M. Elattar, Abeer A. Ghoniem, Fatimah O. Al-Otibi, Abdulaziz S. Fakhouri, Yosra A. Helmy, Wesam Eldin I.A. Saber, Mahmoud A.E. Hassan, Ashraf Elsayed

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

This work focused on the biosynthesis of Ag/CeO2 and CuO/CeO2 nanocomposites (NCs) using Curcuma longa extract. The nanocomposites were efficiently characterized using different techniques such as FTIR, UV-visible spectroscopy, zeta potential, DLS, TEM, SEM, EDX, and XRD analyses. The C. longa extract provided high phenolic and flavonoid contents, while demonstrating strong antioxidant action at IC50 = 0.042 mg mL−1. In particular, both nanocomposites exhibited privileged antifungal activity against Macrophomina phaseolina with superiority to CuO/CeO2 (MIC = 29 µg mL−1) over Ag/CeO2 (MIC = 49 µg mL−1). TEM analyses confirmed the adverse effect of nanocomposites on the fungal cell wall. The CuO/CeO2 structure led to mitochondrial and cytoplasmic damage in MCF-7 cells (IC50 = 0.5071 µg mL−1) according to cytotoxicity tests; however, the Ag/CeO2 NC resulted in significant nuclear damage and an increased occurrence of autophagy events. The nanocomposites showed cytotoxic properties by causing oxidative stress, leading to damage of the genomic material and defects in cell structure, suggesting potential therapeutic applications.

Original languageEnglish
Pages (from-to)12100-12116
Number of pages17
JournalRSC Advances
Volume15
Issue number16
DOIs
StatePublished - Apr 17 2025

Bibliographical note

Publisher Copyright:
© 2025 The Royal Society of Chemistry.

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'Eco-friendly synthesis of Ag/CeO2 and CuO/CeO2 nanocomposites using Curcuma longa extract and assessment of their antioxidant, antifungal, and cytotoxic activities'. Together they form a unique fingerprint.

Cite this