Effect of applied magnetic field on shock boundary layer interaction

Ovais U. Khan, Alexandre Martin

Research output: Contribution to conferencePaperpeer-review

Abstract

The governing magneto-hydrodynamic (MHD) equations contain classical fluid dynamics equations along with coupled Maxwell's magnetic induction equations. These equations model both advection and diffusion effects of electromagnetic field. However, available literature indicates that some previous investigations neglect the diffusion of magnetic field and considered only ideal MHD equations for modeling a typical MHD problem. In this work, the effects of magnetic field diffusion term also known as viscous magnetic term have been investigated over flow structure. Low magnetic Reynolds number approximation and ideal full MHD set of equations have been considered and solved using a four-stage modified Runge-Kutta scheme augmented with the Davis-Yee symmetric Total Variation Diminishing model in post-processing stage. Results obtained from viscous and ideal flow computations without applied magnetic field have been found in close agreement. However, results obtained from viscous MHD and ideal MHD computations substantially disagree from each other which indicate that the effect of magnetic diffusion term on overall flow structure is significant.

Original languageEnglish
DOIs
StatePublished - 2012
Event50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition - Nashville, TN, United States
Duration: Jan 9 2012Jan 12 2012

Conference

Conference50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
Country/TerritoryUnited States
CityNashville, TN
Period1/9/121/12/12

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Effect of applied magnetic field on shock boundary layer interaction'. Together they form a unique fingerprint.

Cite this