Abstract
Plantarflexion resistance of an ankle-foot orthosis (AFO) plays an important role to prevent foot-drop, but its impact on push-off has not been well investigated in individuals post-stroke. The aim of this study was to investigate the effect of plantarflexion resistance of an articulated AFO on ankle and knee joint power of the limb wearing the AFO in individuals post-stroke. Gait analysis was performed on 10 individuals with chronic stroke using a Vicon 3-dimensional motion capture system and a Bertec split-belt instrumented treadmill. They walked on the treadmill under 4 plantarflexion resistance levels (S1 < S2<S3 < S4) set on the AFO with resistance adjustable ankle joints. The ankle and knee joint power calculations were performed using Visual3D, and mean values were plotted across a gait cycle. Statistical analyses revealed significant differences in the peak ankle joint power generation according to the plantarflexion resistance of the AFO (P = 0.008). No significant differences were found in the knee joint power. Peak ankle joint power generation [Median (IQR: Interquartile range)] were S1: 0.0517 (0.0238–0.1071) W/kg, S2: 0.0342 (0.0132–0.0862) W/kg, S3: 0.0353 (0.0127–0.0821) W/kg, and S4: 0.0234 (0.0087–0.06764) W/kg. Reduction of the peak ankle joint power generation appeared to be related to reduction in the peak plantarflexion angular velocity at late stance due to increases in the plantarflexion resistance of the AFO. This study showed that peak ankle joint power generation was significantly, and somewhat systematically, affected by plantarflexion resistance of the AFO in individuals post-stroke.
Original language | English |
---|---|
Pages (from-to) | 176-180 |
Number of pages | 5 |
Journal | Journal of Biomechanics |
Volume | 75 |
DOIs | |
State | Published - Jun 25 2018 |
Bibliographical note
Publisher Copyright:© 2018 Elsevier Ltd
Keywords
- AFO
- Gait
- Hemiplegia
- Orthotics
- Stiffness
ASJC Scopus subject areas
- Biophysics
- Rehabilitation
- Biomedical Engineering
- Orthopedics and Sports Medicine