TY - JOUR
T1 - Effects of porcine somatotropin administration on the responses to dietary lysine and a near-ideal blend of amino acids on the amino acid composition of whole-body protein and amino acid accretion rate in growing pigs
AU - Dozier, William A.
AU - Cromwell, Gary L.
AU - Lewis, Austin J.
AU - Miller, Phillip
AU - Lindemann, Merlin D.
N1 - Publisher Copyright:
© 2024 The Author(s).
PY - 2024
Y1 - 2024
N2 - An experiment was conducted to assess the effects of porcine somatotropin (pST) on the responses to a near-ideal blend of AA on the AA composition of empty, whole-empty body (WEB) protein and WEB essential AA accretion rate in pigs from 22 to 60 kg BW. Forty Hampshire × Yorkshire gilts were individually penned and assigned to a 4 × 2 factorial arrangement of treatments consisting of four diets with and without pST injection. A fortified corn-soybean meal basal diet was formulated to contain 1.50% total Lys with Thr, Met, and Trp added to obtain a near-ideal blend of these AA relative to Lys. In three additional diets, Lys was reduced to 1.25%, 1.00%, and 0.75% by diluting the basal diet with cornstarch, cellulose, and sand such that the diets also contained the same ratios of AA. Pigs that received pST were administered a daily i.m. injection of 2 mg of pST. At 60 kg BW, the WEB (carcass, head, viscera, blood, nails, and hair) was ground and analyzed for proximate and AA composition. Administration of pST increased (P < 0.001) accretion rates of WEB protein and essential AA. Increasing dietary essential AA increased (quadratic, P < 0.03) accretion rate of WEB protein, His, Leu, Trp, and Val in pST-treated pigs, but not in untreated pigs. Lysine composition in the accreted WEB protein was not affected (P > 0.05) by dietary Lys. The efficiency of Lys utilization for WEB Lys accretion was linearly affected (P < 0.01) by dietary Lys. These results indicated that the dietary Lys needed to achieve maximum WEB Lys accretion is markedly increased by pST administration.
AB - An experiment was conducted to assess the effects of porcine somatotropin (pST) on the responses to a near-ideal blend of AA on the AA composition of empty, whole-empty body (WEB) protein and WEB essential AA accretion rate in pigs from 22 to 60 kg BW. Forty Hampshire × Yorkshire gilts were individually penned and assigned to a 4 × 2 factorial arrangement of treatments consisting of four diets with and without pST injection. A fortified corn-soybean meal basal diet was formulated to contain 1.50% total Lys with Thr, Met, and Trp added to obtain a near-ideal blend of these AA relative to Lys. In three additional diets, Lys was reduced to 1.25%, 1.00%, and 0.75% by diluting the basal diet with cornstarch, cellulose, and sand such that the diets also contained the same ratios of AA. Pigs that received pST were administered a daily i.m. injection of 2 mg of pST. At 60 kg BW, the WEB (carcass, head, viscera, blood, nails, and hair) was ground and analyzed for proximate and AA composition. Administration of pST increased (P < 0.001) accretion rates of WEB protein and essential AA. Increasing dietary essential AA increased (quadratic, P < 0.03) accretion rate of WEB protein, His, Leu, Trp, and Val in pST-treated pigs, but not in untreated pigs. Lysine composition in the accreted WEB protein was not affected (P > 0.05) by dietary Lys. The efficiency of Lys utilization for WEB Lys accretion was linearly affected (P < 0.01) by dietary Lys. These results indicated that the dietary Lys needed to achieve maximum WEB Lys accretion is markedly increased by pST administration.
KW - amino acid accretion
KW - amino acid composition
KW - dietary lysine
KW - pigs
KW - porcine somatotropin
KW - whole-body protein
UR - http://www.scopus.com/inward/record.url?scp=85194943890&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85194943890&partnerID=8YFLogxK
U2 - 10.1093/jas/skae134
DO - 10.1093/jas/skae134
M3 - Article
C2 - 38733259
AN - SCOPUS:85194943890
SN - 0021-8812
VL - 102
JO - Journal of Animal Science
JF - Journal of Animal Science
M1 - skae134
ER -