Effects of Soil Solarization and Grafting on Tomato Yield and Southern Root-knot Nematode Population Densities

Rachel E. Rudolph, Victoria Bajek, Misbakhul Munir

Research output: Contribution to journalArticlepeer-review

Abstract

High tunnel production has increased in the past 10 years in Kentucky with more than 1500 high tunnels constructed across the state. Tomato is the most popular and most valuable high tunnel crop per square foot. This has contributed to a lack of rotation and increased pressure from root-knot nematodes (RKN; Meloidogyne spp.). Infection by RKN leads to root galling and reduces the host plant's ability to take up water and nutrients. Sustainable strategies are needed to manage increasing RKN populations for long-term health of high tunnel soils. Soil solarization is a nonchemical management strategy that has shown promise in other regions and in open field systems. Because tunnels are primarily used to produce high-value crops and are often used for season extension, solarizing during the off-season would be the most beneficial for growers because solarizing would require taking the tunnel out of production. The primary objective of this study was to determine whether springtime soil solarization in Kentucky high tunnels followed by use of resistant tomato cultivars is a viable and effective management strategy for RKN populations. Soil solarization was performed in two commercial high tunnels naturally infested with southern RKN (Meloidogyne incognita) for 2, 4, and 6 weeks and compared with a nonsolarized control. Soil temperatures reached during solarization were assessed at 7.6-, 15.2-, and 22.8-cm soil depth. After solarization, tomato was transplanted, including 'Cherokee Carbon' grafted onto RKN-resistant rootstocks 'Fortamino' and 'Estamino', RKN-resistant nongrafted 'Caimon', and susceptible 'Cherokee Carbon' as the control. The highest soil temperature achieved was 50 _C during 6 weeks of solarization at 7.6-cm soil depth compared with 38 _C reached in nonsolarized soil. Soil population densities of RKN increased each month after solarization and were generally lower after solarization with resistant tomato cultivars. The interaction of soil solarization and tomato cultivars was significant with respect to RKN densities in soil and roots. The mean RKN soil and root population densities in the nonsolarized, nonresistant treatment combination was significantly greater compared with all other treatments (P < 0.0001). Population densities of RKN were significantly higher in the nonsolarized control compared with solarized treatments (P 5 0.0002). Nongrafted 'Cherokee Carbon' had significantly more RKN in surrounding soil compared with all other tomato treatments. Tomato yield was unaffected by soil solarization, but there were significant differences based on tomato cultivars alone; nongrafted 'Cherokee Carbon' yielded less than the resistant 'Caimon'. Together, solarization and resistant cultivars reduced RKN population densities in soil and roots, which can provide growers with a nonchemical approach for long-term RKN management and high tunnel resiliency.

Original languageEnglish
Pages (from-to)1443-1449
Number of pages7
JournalHortScience
Volume58
Issue number11
DOIs
StatePublished - Nov 2023

Bibliographical note

Publisher Copyright:
© 2023 American Society for Horticultural Science. All rights reserved.

Keywords

  • Meloidogyne incognita
  • Solanum lycopersicum
  • high tunnel
  • host suitability
  • plant-parasite
  • soil microorganism
  • temperature

ASJC Scopus subject areas

  • Horticulture

Fingerprint

Dive into the research topics of 'Effects of Soil Solarization and Grafting on Tomato Yield and Southern Root-knot Nematode Population Densities'. Together they form a unique fingerprint.

Cite this