TY - JOUR
T1 - Effects of Varying Levels of Duodenal or Midjejunal Glucose and 2-Deoxyglucose Infusion on Small Intestinal Disappearance and Net Portal Glucose Flux in Steers
AU - Krehbiel, C. R.
AU - Britton, R. A.
AU - Harmon, D. L.
AU - Peters, J. P.
AU - Stock, R. A.
AU - Grotjan, H. E.
PY - 1996
Y1 - 1996
N2 - Six crossbred steers (261 ± 18 kg BW) fitted with hepatic portal, mesenteric venous and arterial catheters, and duodenal, midjejunal, and ileal cannulas were used in a replicated 3 × 3 Latin square design to determine the effect of varying levels and site of glucose plus 2-deoxyglucose (2DG) infusion on net portal-drained visceral flux. Steers were fed chopped alfalfa in six equal portions daily at 1.5% of BW. Glucose (0, 9, or 18 g/h) and 2DG (0, 1, or 2 g/h) were infused continuously through the duodenal or midjejunal cannula (two infusion sites) at total glucose plus 2DG infusion rates of 0, 10, or 20 g/h. Arterial and portal blood samples were taken simultaneously at 20-min intervals from 5 to 9 h of infusion. Portal blood flow was determined by continuous infusion of p-aminohippurate and net flux was calculated as venous-arterial concentration (PA) difference times blood flow. Arterial concentration of glucose was not affected (P > .10) by glucose plus 2DG infusion, whereas arterial concentration of 2DG was greater (P < .05) when glucose plus 2DG was infused into the duodenum and increased (linear, P < .10) as amount of glucose plus 2DG infused into both the duodenum and midjejunum increased. Net portal flux and PA difference of glucose and 2DG were greater (P < .05) when glucose plus 2DG was infused into the duodenum. Although 2DG was infused at 10% of the total glucose plus 2DG infusion, it accounted for only 1.7 and .7% of the glucose plus 2DG appearing in portal blood when glucose plus 2DG was infused at 10 and 20 g/h, respectively. We conclude that glucose is more readily absorbed across the proximal-half than the distal-half of the small intestine, and that passive diffusion is a minor route of glucose absorption.
AB - Six crossbred steers (261 ± 18 kg BW) fitted with hepatic portal, mesenteric venous and arterial catheters, and duodenal, midjejunal, and ileal cannulas were used in a replicated 3 × 3 Latin square design to determine the effect of varying levels and site of glucose plus 2-deoxyglucose (2DG) infusion on net portal-drained visceral flux. Steers were fed chopped alfalfa in six equal portions daily at 1.5% of BW. Glucose (0, 9, or 18 g/h) and 2DG (0, 1, or 2 g/h) were infused continuously through the duodenal or midjejunal cannula (two infusion sites) at total glucose plus 2DG infusion rates of 0, 10, or 20 g/h. Arterial and portal blood samples were taken simultaneously at 20-min intervals from 5 to 9 h of infusion. Portal blood flow was determined by continuous infusion of p-aminohippurate and net flux was calculated as venous-arterial concentration (PA) difference times blood flow. Arterial concentration of glucose was not affected (P > .10) by glucose plus 2DG infusion, whereas arterial concentration of 2DG was greater (P < .05) when glucose plus 2DG was infused into the duodenum and increased (linear, P < .10) as amount of glucose plus 2DG infused into both the duodenum and midjejunum increased. Net portal flux and PA difference of glucose and 2DG were greater (P < .05) when glucose plus 2DG was infused into the duodenum. Although 2DG was infused at 10% of the total glucose plus 2DG infusion, it accounted for only 1.7 and .7% of the glucose plus 2DG appearing in portal blood when glucose plus 2DG was infused at 10 and 20 g/h, respectively. We conclude that glucose is more readily absorbed across the proximal-half than the distal-half of the small intestine, and that passive diffusion is a minor route of glucose absorption.
KW - Absorption
KW - Glucose 2-Deoxyglucose
KW - Small Intestine
KW - Steers
UR - http://www.scopus.com/inward/record.url?scp=0030096009&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030096009&partnerID=8YFLogxK
U2 - 10.2527/1996.743693x
DO - 10.2527/1996.743693x
M3 - Article
C2 - 8707729
AN - SCOPUS:0030096009
SN - 0021-8812
VL - 74
SP - 693
EP - 700
JO - Journal of Animal Science
JF - Journal of Animal Science
IS - 3
ER -