Effects of vocal fold nodules on glottal cycle measurements derived from high-speed videoendoscopy in children

Rita R. Patel, Harikrishnan Unnikrishnan, Kevin D. Donohue

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

The goal of this study is to quantify the effects of vocal fold nodules on vibratory motion in children using high-speed videoendoscopy. Differences in vibratory motion were evaluated in 20 children with vocal fold nodules (5-11 years) and 20 age and gender matched typically developing children (5-11 years) during sustained phonation at typical pitch and loudness. Normalized kinematic features of vocal fold displacements from the mid-membranous vocal fold point were extracted from the steady-state high-speed video. A total of 12 kinematic features representing spatial and temporal characteristics of vibratory motion were calculated. Average values and standard deviations (cycle-to-cycle variability) of the following kinematic features were computed: normalized peak displacement, normalized average opening velocity, normalized average closing velocity, normalized peak closing velocity, speed quotient, and open quotient. Group differences between children with and without vocal fold nodules were statistically investigated. While a moderate effect size was observed for the spatial feature of speed quotient, and the temporal feature of normalized average closing velocity in children with nodules compared to vocally normal children, none of the features were statistically significant between the groups after Bonferroni correction. The kinematic analysis of the mid-membranous vocal fold displacement revealed that children with nodules primarily differ from typically developing children in closing phase kinematics of the glottal cycle, whereas the opening phase kinematics are similar. Higher speed quotients and similar opening phase velocities suggest greater relative forces are acting on vocal fold in the closing phase. These findings suggest that future large-scale studies should focus on spatial and temporal features related to the closing phase of the glottal cycle for differentiating the kinematics of children with and without vocal fold nodules.

Original languageEnglish
Article numbere0154586
JournalPLoS ONE
Volume11
Issue number4
DOIs
StatePublished - Apr 2016

Bibliographical note

Publisher Copyright:
© 2016 Patel et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Effects of vocal fold nodules on glottal cycle measurements derived from high-speed videoendoscopy in children'. Together they form a unique fingerprint.

Cite this