TY - JOUR
T1 - Electromagnetic fields influence NGF activity and levels following sciatic nerve transection
AU - Longo, F. M.
AU - Yang, T.
AU - Hamilton, S.
AU - Hyde, J. F.
AU - Walker, J.
AU - Jennes, L.
AU - Stach, R.
AU - Sisken, B. F.
PY - 1999/1/15
Y1 - 1999/1/15
N2 - Pulsed electromagnetic fields (PEMF) have been shown to increase the rate of nerve regeneration. Transient post-transection loss of target- derived nerve growth factor (NGF) is one mechanism proposed to signal induction of early nerve regenerative events. We tested the hypothesis that PEMF alter levels of NGF activity and protein in injured nerve and/or dorsal root ganglia (DRG) during the first stages of regeneration (6-72 hr). Rats with a transection injury to the midthigh portion of the sciatic nerve on one side were exposed to PEMF or sham control PEMF for 4 hr/day for different time periods. NGF-like activity was determined in DRG, in 5-mm nerve segments proximal and distal to the transection site and in a corresponding 5-mm segment of the contralateral nonoperated nerve. NGF-like activity of coded tissue samples was measured in a blinded fashion using the chick DRG sensory neuron bioassay. Overall, PEMF caused a significant decrease in NGF-like activity in nerve tissue (P < 0.02, repeated measures analysis of variance, ANOVA) with decreases evident in proximal, distal, and contralateral nonoperated nerve. Unexpectedly, transection was also found to cause a significant (P = 0.001) 2-fold increase in DRG NGF-like activity between 6 and 24 hr postinjury in contralateral but not ipsilateral DRG. PEMF also reduced NGF-like activity in DRG, although this decrease did not reach statistical significance. Assessment of the same nerve and DRG samples using ELISA and NGF-specific antibodies confirmed an overall significant (P < 0.001) decrease in NGF levels in PEMF-treated nerve tissue, while no decrease was detected in DRG or in nerve samples harvested from PEMF-treated uninjured rats. These findings demonstrate that PEMF can affect growth factor activity and levels, and raise the possibility that PEMF might promote nerve regeneration by amplifying the early postinjury decline in NGF activity.
AB - Pulsed electromagnetic fields (PEMF) have been shown to increase the rate of nerve regeneration. Transient post-transection loss of target- derived nerve growth factor (NGF) is one mechanism proposed to signal induction of early nerve regenerative events. We tested the hypothesis that PEMF alter levels of NGF activity and protein in injured nerve and/or dorsal root ganglia (DRG) during the first stages of regeneration (6-72 hr). Rats with a transection injury to the midthigh portion of the sciatic nerve on one side were exposed to PEMF or sham control PEMF for 4 hr/day for different time periods. NGF-like activity was determined in DRG, in 5-mm nerve segments proximal and distal to the transection site and in a corresponding 5-mm segment of the contralateral nonoperated nerve. NGF-like activity of coded tissue samples was measured in a blinded fashion using the chick DRG sensory neuron bioassay. Overall, PEMF caused a significant decrease in NGF-like activity in nerve tissue (P < 0.02, repeated measures analysis of variance, ANOVA) with decreases evident in proximal, distal, and contralateral nonoperated nerve. Unexpectedly, transection was also found to cause a significant (P = 0.001) 2-fold increase in DRG NGF-like activity between 6 and 24 hr postinjury in contralateral but not ipsilateral DRG. PEMF also reduced NGF-like activity in DRG, although this decrease did not reach statistical significance. Assessment of the same nerve and DRG samples using ELISA and NGF-specific antibodies confirmed an overall significant (P < 0.001) decrease in NGF levels in PEMF-treated nerve tissue, while no decrease was detected in DRG or in nerve samples harvested from PEMF-treated uninjured rats. These findings demonstrate that PEMF can affect growth factor activity and levels, and raise the possibility that PEMF might promote nerve regeneration by amplifying the early postinjury decline in NGF activity.
KW - NGF
KW - Nerve growth factor
KW - Nerve regeneration
KW - PEMF
KW - Pulsed electromagnetic fields
UR - http://www.scopus.com/inward/record.url?scp=0033556015&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033556015&partnerID=8YFLogxK
U2 - 10.1002/(SICI)1097-4547(19990115)55:2<230::AID-JNR10>3.0.CO;2-3
DO - 10.1002/(SICI)1097-4547(19990115)55:2<230::AID-JNR10>3.0.CO;2-3
M3 - Article
C2 - 9972825
AN - SCOPUS:0033556015
SN - 0360-4012
VL - 55
SP - 230
EP - 237
JO - Journal of Neuroscience Research
JF - Journal of Neuroscience Research
IS - 2
ER -