Zinc fingers and homeoboxes 2 (Zhx2) are transcriptional regulators of liver gene expression with key functions in embryonic development as well as tissue regeneration in response to damage and disease, presumably through its control of target genes. Previous microarray data suggested that elongation of very long chain fatty acids-3 (Elovl3), a member of the ELOVL family of enzymes that synthesize very long chain fatty acids (VLCFAs), is a putative Zhx2 target gene. VLCFAs are core component of ceramides and other bioactive sphingolipids that are often dysregulated in diseases and regulate key cellular processes including proliferation. Since several previously identified Zhx2 targets become dysregulated in liver damage, we investigated the relationship between Zhx2 and Elovl3 in liver development, damage, and regeneration. Here, using mouse and cell models, we demonstrate that Zhx2 positively regulates Elovl3 expression in the liver and that male-biased hepatic Elovl3 expression is established between 4 and 8 wk of age in mice. Elovl3 is dramatically repressed in mouse models of liver regeneration, and the reduced Elovl3 levels in the regenerating liver are associated with changes in hepatic VLCFAs. Human hepatoma cell lines with forced Elovl3 expression have lower rates of cell growth; analysis of synchronized cells indicates that this reduced proliferation correlates with cells stalling in S-phase and lower mRNA levels of cell cyclins. Taken together, these data indicate that Elovl3 expression helps regulate cellular proliferation during liver development and regeneration, possibly through control of VLCFAs. NEW & NOTEWORTHY Numerous targets of the transcription factor Zhx2 are dysregulated in liver disease. We show that the elongase Elovl3 is a novel Zhx2 target. Elovl3 and Zhx2 expression change during liver regeneration, which is associated with changes in very long chain fatty acids. Forced Elovl3 expression reduces cell growth and blocks cell cycle progression. This suggests that Elovl3 may account, at least in part, for the relationship between Zhx2 and proliferation during liver development and disease.

Original languageEnglish
Pages (from-to)G582-G592
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Issue number6
StatePublished - Dec 2023

Bibliographical note

Publisher Copyright:
Copyright © 2023 the American Physiological Society.


  • gene expression
  • lipid metabolism
  • liver
  • molecular biology
  • regeneration

ASJC Scopus subject areas

  • Physiology
  • Hepatology
  • Gastroenterology
  • Physiology (medical)


Dive into the research topics of 'Elongation of very long chain fatty acids-3 (Elovl3) is activated by ZHX2 and is a regulator of cell cycle progression'. Together they form a unique fingerprint.

Cite this