TY - JOUR
T1 - Endotoxin administration alters the force vs. pCa relationship of skeletal muscle fibers
AU - Supinski, G.
AU - Nethery, D.
AU - Nosek, T. M.
AU - Callahan, L. A.
AU - Stofan, D.
AU - Dimarco, A.
PY - 2000/4
Y1 - 2000/4
N2 - Recent work indicates that endotoxemia elicits severe reductions in skeletal muscle force-generating capacity. The subcellular alterations responsible for these decrements have not, however, been fully characterized. One possibility is that the contractile proteins per se are altered in endotoxemia and another is that the mechanism by which these proteins are activated is affected. The purpose of the present study was to assess the effects of endotoxin administration on the contractile proteins by examining the maximum calcium-activated force (F(max)) and calcium sensitivity of single Triton-skinned fibers of diaphragm, soleus, and extensor digitorum longus (EDL) muscles taken from control and endotoxin-treated (8 mg/kg) rats. Fibers were mounted on a force transducer and sequentially activated by serial immersion in solutions of increasing Ca2+ concentration (i.e., pCa 6.0 to pCa 5.0); force vs. pCa data were fit to the Hill equation. All fibers were typed at the conclusion of studies using gel electrophoresis. F(max), the calcium concentration required for half-maximal activation (Ca50), and the Hill coefficient were compared as a function of muscle and fiber type for the control and endotoxin-treated animals. Control group F(max) was similar for diaphragm, soleus, and EDL fibers, i.e., 112.34 ± 2.64, 111.55 ± 3.66, and 104.05 ± 4.33 kPa, respectively. Endotoxin administration reduced the average F(max) for fibers from all three muscles to 80.25 ± 2.30, 72.47 ± 2.97, and 78.32 ± 2.43 kPa, respectively (P < 0.001 for comparison of each to control). All fiber types in diaphragm, soleus, and EDL muscles manifested similar endotoxin-related reductions in F(max). The Ca50 and the Hill coefficient for all fiber types and all muscles were unaffected by endotoxin administration. We speculate that these alterations in the intrinsic properties of the contractile proteins represent a major mechanism by which endotoxemia reduces muscle force-generating capacity.
AB - Recent work indicates that endotoxemia elicits severe reductions in skeletal muscle force-generating capacity. The subcellular alterations responsible for these decrements have not, however, been fully characterized. One possibility is that the contractile proteins per se are altered in endotoxemia and another is that the mechanism by which these proteins are activated is affected. The purpose of the present study was to assess the effects of endotoxin administration on the contractile proteins by examining the maximum calcium-activated force (F(max)) and calcium sensitivity of single Triton-skinned fibers of diaphragm, soleus, and extensor digitorum longus (EDL) muscles taken from control and endotoxin-treated (8 mg/kg) rats. Fibers were mounted on a force transducer and sequentially activated by serial immersion in solutions of increasing Ca2+ concentration (i.e., pCa 6.0 to pCa 5.0); force vs. pCa data were fit to the Hill equation. All fibers were typed at the conclusion of studies using gel electrophoresis. F(max), the calcium concentration required for half-maximal activation (Ca50), and the Hill coefficient were compared as a function of muscle and fiber type for the control and endotoxin-treated animals. Control group F(max) was similar for diaphragm, soleus, and EDL fibers, i.e., 112.34 ± 2.64, 111.55 ± 3.66, and 104.05 ± 4.33 kPa, respectively. Endotoxin administration reduced the average F(max) for fibers from all three muscles to 80.25 ± 2.30, 72.47 ± 2.97, and 78.32 ± 2.43 kPa, respectively (P < 0.001 for comparison of each to control). All fiber types in diaphragm, soleus, and EDL muscles manifested similar endotoxin-related reductions in F(max). The Ca50 and the Hill coefficient for all fiber types and all muscles were unaffected by endotoxin administration. We speculate that these alterations in the intrinsic properties of the contractile proteins represent a major mechanism by which endotoxemia reduces muscle force-generating capacity.
KW - Diaphragm
KW - Free radicals
KW - Respiratory muscles
KW - Skinned fibers
UR - http://www.scopus.com/inward/record.url?scp=0033996728&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033996728&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.2000.278.4.r891
DO - 10.1152/ajpregu.2000.278.4.r891
M3 - Article
C2 - 10749776
AN - SCOPUS:0033996728
SN - 0363-6119
VL - 278
SP - R891-R896
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 4 47-4
ER -