Engineering Lignin-Derived Carbon-Silicon Nanocomposite Electrodes: Insight into the Copyrolysis Mechanism and Process-Structure-Property-Performance Relationships

Wenqi Li, Dali Qian, Doo Young Kim, Yang Tse Cheng, Jian Shi

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

As a renewable source, available in a large quantity, it is rewarding to find applications for lignin with high added value. We report the use of lignin in synthesizing a three-dimensional, interconnected carbon/silicon nanoparticle (C/Si NP) composite material as a low-cost replacement to conventional anode materials synthesized using expensive and toxic solvents and binders such as polyvinylidene in today's lithium-ion battery (LIB) manufacturing process. To understand how lignin pyrolysis chemistry and processing conditions affect the structure, mechanical property, and electrochemical performance of the synthesized electrode materials, the thermochemical conversion process was, for the first time, quantitatively investigated using analytical pyrolysis-gas chromatography-mass spectrometry (GC-MS) along with a suite of other analytical tools. Results suggest that the surface bonding interaction of the C/Si NPs was evolved from pristine Si to -Si-O-C-, to -O- Si- O-, with the increase of pyrolysis temperature. The -Si-O-C- bond plays a key role in enhancing the cohesive strength and thus improving the electrochemical performance of the Si composite electrode. The pyrolysis-GC-MS can serve as a useful tool to predict the optimal pyrolysis temperature or tailor the properties of the synthesized composite electrodes by controlling the pyrolysis conditions. This study elucidates the processing-structure-property-performance relationships among lignin pyrolysis chemistry, carbon material structure and properties, and the electrochemical performance of the resulting electrode materials. Such knowledge serves as a basis for designing lignin-derived composite materials for electrochemical energy storage applications.

Original languageEnglish
Pages (from-to)868-879
Number of pages12
JournalACS Sustainable Chemistry and Engineering
Volume10
Issue number2
DOIs
StatePublished - Jan 17 2022

Bibliographical note

Funding Information:
This work was supported by the USDA National Institute of Food and Agriculture under Project Accession No. 1015068 and the National Science Foundation under Cooperative Agreements 1355438. Yang-Tse Cheng and Doo Young Kim appreciate the support from the National Science Foundation under Cooperative Agreement No. 1355438. The authors thank Yikai Wang and Dingying Dang for collecting data of the scratching test; Ming Wang for the XPS test; and Namal Wanninayake for the Raman spectroscopy test in the present study.

Publisher Copyright:
© 2022 American Chemical Society.

Keywords

  • lignin
  • lithium-ion battery
  • processing-structure-property-function relationships
  • pyrolysis
  • silicon electrode

ASJC Scopus subject areas

  • Chemistry (all)
  • Environmental Chemistry
  • Chemical Engineering (all)
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Engineering Lignin-Derived Carbon-Silicon Nanocomposite Electrodes: Insight into the Copyrolysis Mechanism and Process-Structure-Property-Performance Relationships'. Together they form a unique fingerprint.

Cite this