Abstract
Using temperature-dependent measurements and device modeling, we systematically study the effective back-contact barrier of CZTSe devices to improve the property of the back-contact interface. By comparing with CZTSe devices with various nanoscale Ge configurations, CZTSe nanoscale Ge bi-layers devices show the improved power conversion efficiency by 1.1%. DC magnetron sputtering is used to fabricate CZTSe: nanolayer Ge devices. Critical device parameters are characterized to understand the impact of nanoscale Ge films on the back-contact device characteristics. Based on empirical results, modeling is performed for the influence of MoSe2 defects on the effective back-contact barrier. Analysis of experimental results of Ge bi-layers devices with the improved back-contact barrier makes a good agreement with modeling and Sentaurus TCAD simulation at the 95% confidence-level. The conversion efficiency of CZTSe: nanoscale Ge bi-layers devices is improved up to 8.3%.
Original language | English |
---|---|
Pages (from-to) | 114-120 |
Number of pages | 7 |
Journal | Solar Energy |
Volume | 194 |
DOIs | |
State | Published - Dec 2019 |
Bibliographical note
Publisher Copyright:© 2019 International Solar Energy Society
Keywords
- Back-contact
- CZTSe
- Ge nanolayer
- Kesterite
- Scottky barrier
- Thin film solar cells
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- General Materials Science