Abstract
Oxygen vacancies in non-stoichiometric TiO2 electron transport layers can capture injected electrons and act as recombination centers. In this study, the compact TiO2 electron transport layers of perovskite solar cells (PSCs) are doped with different molar ratios of Fe3+ in order to passivate such defects and improve their electron transport properties. The electrical conductivity, absorption, crystal structure, and the performance of the PSCs are systematically studied. It shows that Fe3+-doping improves the conductivity of TiO2 compact layers compared with the pristine TiO2, boosting the photovoltaic performance of PSCs. The reduced trap-filled limit voltage (VTFL) of the Fe3+-doped TiO2 compact layers suggests that trap density in the Fe3+-TiO2 films is much lower than that of a pristine TiO2 film. With the optimized doping concentration (1 mol%) of Fe3+, the best power conversion efficiency of PSCs is improved from 16.02% to 18.60%.
Original language | English |
---|---|
Pages (from-to) | 10754-10760 |
Number of pages | 7 |
Journal | Journal of Materials Chemistry C |
Volume | 5 |
Issue number | 41 |
DOIs | |
State | Published - 2017 |
Bibliographical note
Publisher Copyright:© 2017 The Royal Society of Chemistry.
Funding
This work was supported by the National Natural Science Foundation of China under Grant No. 61421002, 61574029, 61471085, and 61371046. This work was also partially supported by the University of Kentucky.
Funders | Funder number |
---|---|
University of Kentucky | |
National Natural Science Foundation of China (NSFC) | 61471085, 61574029, 61371046, 61421002 |
ASJC Scopus subject areas
- General Chemistry
- Materials Chemistry