Nucleotidyltransferases are central to nearly all glycosylation-dependent processes and have been used extensively for the chemoenzymatic synthesis of sugar nucleotides. The determination of the NTP specificity of the model thymidylyltransferase RmlA revealed RmlA to utilize all eight naturally occurring NTPs with varying levels of catalytic efficiency, even in the presence of non-native sugar-1-phosphates. Guided by structural models, active site engineering of RmlA led to alterations of the inherent pyrimidine/purine bias by up to three orders of magnitude. This study sets the stage for engineering single universal nucleotidyl-transferases and also provides new catalysts for the synthesis of novel nucleotide diphosphosugars.