Environmental change explains cichlid adaptive radiation at Lake Malawi over the past 1.2 million years

Sarah J. Ivory, Margaret W. Blome, John W. King, Michael M. McGlue, Julia E. Cole, Andrew S. Cohen

Research output: Contribution to journalArticlepeer-review

93 Scopus citations


Long paleoecological records are critical for understanding evolutionary responses to environmental forcing and unparalleled tools for elucidating the mechanisms that lead to the development of regions of high biodiversity. We use a 1.2-My record from Lake Malawi, a textbook example of biological diversification, to document how climate and tectonics have driven ecosystem and evolutionary dynamics. Before ∼800 ka, Lake Malawi was much shallower than today, with higher frequency but much lower amplitude water-level and oxygenation changes. Since ∼800 ka, the lake has experienced much larger environmental fluctuations, best explained by a punctuated, tectonically driven rise in its outlet location and level. Following the reorganization of the basin, a change in the pacing of hydroclimate variability associated with the Mid-Pleistocene Transition resulted in hydrologic change dominated by precession rather than the high-latitude teleconnections recorded elsewhere. During this time, extended, deep lake phases have abruptly alternated with times of extreme aridity and ecosystem variability. Repeated crossings of hydroclimatic thresholds within the lake system were critical for establishing the rhythm of diversification, hybridization, and extinction that dominate the modern system. The chronology of these changes closely matches both the timing and pattern of phylogenetic history inferred independently for the lake's extraordinary array of cichlid fish species, suggesting a direct link between environmental and evolutionary dynamics.

Original languageEnglish
Pages (from-to)11895-11900
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number42
StatePublished - Oct 18 2016

Bibliographical note

Publisher Copyright:
© 2016, National Academy of Sciences. All rights reserved.


  • Adaptive radiation
  • Cichlid evolution
  • Paleoclimate
  • Paleoecology
  • Tropical climate

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Environmental change explains cichlid adaptive radiation at Lake Malawi over the past 1.2 million years'. Together they form a unique fingerprint.

Cite this