Abstract
We demonstrate a scalable method for the separation of the bacterial periplasm from the cytoplasm. This method is used to purify periplasmic protein for the purpose of biophysical characterization, and measure substrate transfer between periplasmic and cytoplasmic compartments. By carefully limiting the time that the periplasm is separated from the cytoplasm, the experimenter can extract the protein of interest and assay each compartment individually for substrate without carry-over contamination between compartments. The extracted protein from fractionation can then be further analyzed for three-dimensional structure determination or substrate-binding profiles. Alternatively, this method can be performed after incubation with a radiotracer to determine total percent uptake, as well as distribution of the tracer (and hence metal transport) across different bacterial compartments. Experimentation with a radiotracer can help differentiate between a physiological substrate and artefactual substrate, such as those caused by mismetallation. X-ray fluorescence can be used to discover the presence or absence of metal incorporation in a sample, as well as measure changes that may occur in metal incorporation as a product of growth conditions, purification conditions, and/or crystallization conditions. X-ray fluorescence also provides a relative measure of abundance for each metal, which can be used to determine the best metal energy absorption peak to use for anomalous X-ray scattering data collection. Radiometal uptake can be used as a method to validate the physiological nature of a substrate detected by X-ray fluorescence, as well as support the discovery of novel substrates.
Original language | English |
---|---|
Article number | e57169 |
Journal | Journal of Visualized Experiments |
Volume | 2018 |
Issue number | 132 |
DOIs | |
State | Published - Feb 1 2018 |
Bibliographical note
Funding Information:Data were also collected at GM/CA@APS, which has been funded in whole or in part with federal funds from the National Cancer Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM-12006). This research used resources of the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38.
Funding Information:
Data were also collected at GM/CA@APS, which has been funded in whole or in part with federal funds from the National Cancer Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM-12006). This research used resources of the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. We would like to acknowledge the UAB Comprehensive Cancer Center - Mass Spectrometry/Proteomics Shared Facility (P30CA13148-38) for their assistance in mass spectrometry analysis. C.D.R. was supported by a grant from the University of Alabama at Birmingham Office of Diversity, Equity, and Inclusion. L.L.R. was supported by the Radiology Department of the University of Alabama at Birmingham. The Department of Energy, Office of Science, Isotope Program supported 52Mn production and A.V.F.M. under grant DESC0015773.
Funding Information:
C.D.R. was supported by a grant from the University of Alabama at Birmingham Office of Diversity, Equity, and Inclusion. L.L.R. was supported by the Radiology Department of the University of Alabama at Birmingham. The Department of Energy, Office of Science, Isotope Program supported 52Mn production and A.V.F.M. under grant DESC0015773.
Publisher Copyright:
© 2018 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
Keywords
- Chemistry
- Fractionation
- Issue 132
- Periplasm
- Plague
- Radioactivity
- Radiotracer
- Substrate-Binding Protein (SBP)
- Transition Metal
- X-Ray Fluorescence
- Yersinia pestis
- YfeA
ASJC Scopus subject areas
- Neuroscience (all)
- Chemical Engineering (all)
- Biochemistry, Genetics and Molecular Biology (all)
- Immunology and Microbiology (all)