Evaluating the necessity of PCR duplicate removal from next-generation sequencing data and a comparison of approaches

Research output: Contribution to journalArticlepeer-review

76 Scopus citations

Abstract

Background: Analyzing next-generation sequencing data is difficult because datasets are large, second generation sequencing platforms have high error rates, and because each position in the target genome (exome, transcriptome, etc.) is sequenced multiple times. Given these challenges, numerous bioinformatic algorithms have been developed to analyze these data. These algorithms aim to find an appropriate balance between data loss, errors, analysis time, and memory footprint. Typical analysis pipelines require multiple steps. If one or more of these steps is unnecessary, it would significantly decrease compute time and data manipulation to remove the step. One step in many pipelines is PCR duplicate removal, where PCR duplicates arise from multiple PCR products from the same template molecule binding on the flowcell. These are often removed because there is concern they can lead to false positive variant calls. Picard (MarkDuplicates) and SAMTools (rmdup) are the two main softwares used for PCR duplicate removal. Results: Approximately 92 % of the 17+ million variants called were called whether we removed duplicates with Picard or SAMTools, or left the PCR duplicates in the dataset. There were no significant differences between the unique variant sets when comparing the transition/transversion ratios (p = 1.0), percentage of novel variants (p = 0.99), average population frequencies (p = 0.99), and the percentage of protein-changing variants (p = 1.0). Results were similar for variants in the American College of Medical Genetics genes. Genotype concordance between NGS and SNP chips was above 99 % for all genotype groups (e.g., homozygous reference). Conclusions: Our results suggest that PCR duplicate removal has minimal effect on the accuracy of subsequent variant calls.

Original languageEnglish
Article number239
JournalBMC Bioinformatics
Volume17
DOIs
StatePublished - Jul 25 2016

Bibliographical note

Funding Information:
Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Data used in preparation of this article were obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI) database(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/orprovided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ ADNI_Acknowledgement_List.pdf. Additionally, support for this project was provided by the National Institutes of Health (R01AG042611) and the Brigham Young University Department of Biology.

Publisher Copyright:
© 2016 The Author(s).

Keywords

  • Next-Generation Sequencing
  • PCR duplicate removal
  • Picard
  • SAMTools

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Evaluating the necessity of PCR duplicate removal from next-generation sequencing data and a comparison of approaches'. Together they form a unique fingerprint.

Cite this