Evaluation of mechanical properties and effective thickness of composite interfaces

Sesha Spandana Pulla, Y. Charles Lu

Research output: Contribution to journalConference articlepeer-review


Polymer matrix composites (PMCs) have been increasingly used for high temperature applications in automotive and aerospace industries. Under such conditions, the materials will experience thermomechanical degradation which can cause premature failure of the composite structures. The desire to predict the damage and lifetime of high temperature polymer matrix composites (HTPMCs) and the structural durability for structural applications has been elusive. The success of the multiscale modeling and analysis relies on the experimental capability of properly characterizing the evolution of mechanical behavior of each constituent: matrices, fibers, and interfaces. This paper presents a navel technique, nanoindentation, to identify the interfaces between dissimilar materials and subsequently to evaluate the physical and mechanical properties across the interfaces. It is proposed to use a nanoindenter equipped with small spherical tip, <40 nanometers in radius, to indent across the interfaces of dissimilar materials. The proposed method has been validated by conducting a large number of virtual experiments through 3-dimensional finite element simulations, by varying the properties of the two dissimilar materials, including various combinations of modulus (E1/E2), yield strength (σy1y2), hardening index (n 1/n2), interface sizes (R/T), Poisson's ratio (v), etc. The mechanical properties across the interfaces have been obtained, and a quantitative model for predicting the interface sizes has been established.

Original languageEnglish
JournalSAE Technical Papers
StatePublished - 2012
EventSAE 2012 World Congress and Exhibition - Detroit, MI, United States
Duration: Apr 24 2012Apr 26 2012

ASJC Scopus subject areas

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Evaluation of mechanical properties and effective thickness of composite interfaces'. Together they form a unique fingerprint.

Cite this