Evaluations of Mechanical Properties of ABS Parts from Open-Source 3D Printers and Conventional Manufacturing

Jordan Garcia, Robert Harper, Coilin Bradley, John Schmidt, Y. Charles Lu

Research output: Contribution to journalConference articlepeer-review

Abstract

3D printing is a revolutionary manufacturing method that allows the productions of engineering parts almost directly from modeling software on a computer. With 3D printing technology, future manufacturing could become vastly efficient. However, the procedures used in 3D printing differ substantially among the printers and from those used in conventional manufacturing. The objective of the present work was to comprehensively evaluate the mechanical properties of engineering products fabricated by 3D printing and conventional manufacturing. Three open-source 3D printers, i.e., the Flash Forge Dreamer, the Tevo Tornado, and the Prusa, were used to fabricate the identical parts out of the same material (acrylonitrile butadiene styrene). The parts were printed at various positions on the printer platforms and then tested in bending. Results indicate that there exist substantial differences in mechanical responses among the parts by different 3D printers. Specimens from the Prusa printer exhibit the best elastic properties while specimens from the Flash Forge printer exhibit the greatest post-yield responses. There further exist noticeable variations in mechanical properties among the parts that were fabricated by the same printer. Depending on the positions that the parts were placed on a printer platform, the properties of resultant parts can vary greatly. For comparison, identical parts were fabricated using a conventional manufacturing method, i.e., compression molding. Results show that compression molded parts exhibit more robust and more homogeneous properties than those from 3D printing.

Original languageEnglish
JournalSAE Technical Papers
Volume2020-April
Issue numberApril
DOIs
StatePublished - Apr 14 2020
EventSAE 2020 World Congress Experience, WCX 2020 - Detroit, United States
Duration: Apr 21 2020Apr 23 2020

Bibliographical note

Publisher Copyright:
© 2020 SAE International. All Rights Reserved.

ASJC Scopus subject areas

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Evaluations of Mechanical Properties of ABS Parts from Open-Source 3D Printers and Conventional Manufacturing'. Together they form a unique fingerprint.

Cite this