Evidence for a novel insulin-like growth factor (IGF)-dependent protease regulating IGF-binding protein-4 in dermal fibroblasts

J. Fowlkes, M. Freemark

Research output: Contribution to journalArticlepeer-review

116 Scopus citations

Abstract

The mechanisms by which insulin-like growth factors (IGFs) reduce IGF-binding protein-4 (IGFBP-4) levels in cellular conditioned media are poorly understood. The effect of IGFs on IGFBP-4 levels in fibroblast conditioned media is not mediated via the type X or type 2 cellular IGF receptors, and the IGFs exert little or no effects on IGFBP-4 messenger RNA levels in human adult fibroblasts or in rat neuroblastoma cells. To determine whether the effects of IGFs on IGFBP-4 might be exerted through alterations in IGFBP-4 degradation, we incubated cell-free, fibroblast-conditioned media from either sheep or human dermal fibroblasts with or without IGF-I, IGF-II (each 1 µg/ ml), or insulin (10 µ/ml) for 72 h at 37 C. Samples were then analyzed by Western ligand blot using radiolabeled IGFs and by immunoblotting using a polyclonal antisera to human IGFBP-4. In the absence of IGFs, no apparent changes in the basal concentrations of the various IGFBPs were observed. In contrast, incubation of media with IGFs caused a 70-80% reduction in levels of both sheep and human IGFBP-4, whereas incubation with insulin was without effect. Similarly, incubation of cell-free conditioned media containing recombinant human IGFBP-4 with IGF-I caused a reduction in detectable levels of the 28K protein. The decrease in IGFBP-4 levels was accompanied by the appearance of an immunoreactive approximate 17-20K fragment that did not bind radiolabeled IGFs by ligand blot. The IGF-dependent decrease in IGFBP-4 was prevented by coincubation of the media with serine protease inhibitors, EDTA, or 1, 10-phenanthrolene, suggesting that IGFs may activate an IGFBP-4 specific metallo-serine protease present in fibroblast conditioned media. Alternatively, binding of IGF-I or -II to IGFBP-4 may enhance the susceptibility of IGFBP-4 to proteolytic degradation. The demonstration that IGF-I and IGF-II can promote directly the proteolytic degradation of IGFBP-4 into fragments that do not bind IGFs provides a novel mechanism by which the IGFs may increase their own availability and/or activity in biological fluids.

Original languageEnglish
Pages (from-to)2071-2076
Number of pages6
JournalEndocrinology
Volume131
Issue number5
DOIs
StatePublished - Nov 1992

ASJC Scopus subject areas

  • Endocrinology

Fingerprint

Dive into the research topics of 'Evidence for a novel insulin-like growth factor (IGF)-dependent protease regulating IGF-binding protein-4 in dermal fibroblasts'. Together they form a unique fingerprint.

Cite this