Experimental study on surface integrity of cryogenically machined Ti-6Al-4V alloy for biomedical devices

M. Hardt, F. Klocke, B. Döbbeler, M. Binder, I. S. Jawahir

Research output: Contribution to journalConference articlepeer-review

15 Scopus citations

Abstract

Titanium and its alloys are widely used in the biomedical sector. In this field, titanium and its alloys are the material of choice for biomedical devices such as hip and knee replacements. Usually, a Total Hip Replacement (THR) is based on four components, made out of different materials due to the material properties associated with the functional performance. One approach to lower the overall manufacturing costs and enhance the reliability of THR's is to manufacture the prosthesis out of one material. The titanium alloy Ti-6Al-4V is, therefore, feasible as it exhibits better osseous integration compared to other metallic materials used as orthopedic devices. The sole use of Ti-6Al-4V alloy requires improvements of surface integrity (SI) and characteristics that are sensitive to SI. One possible way to improve the tribological properties of the THR and the biocompatibility of Ti-6Al-4V alloy is to deliberately decrease the material grain size in the surface layer from the micron scale (> 1 μm) to the region of nano-sized grains (< 100 nm). The objective of this paper is to study and prove the formation of nano-sized grains within the surface as well as the characterization of surface integrity when machining Ti-6Al-4V alloy. Therefore, different cryogenic cooling strategies are used where liquid nitrogen (LN2) is applied to the flank and rake face, and just to the flank face respectively. To compare the effect of cryogenic machining, conventional flood cooling was applied as third cooling strategy. As cutting tool, a roughing tool, having a large cutting edge radius, was used, since severe plastic deformation (SPD) has shown to be capable to produce nano-sized grains in the surface. The results showed, that cryogenic machining using a large cutting edge radius tool is able to decrease the materials grain size to the region of nano-sized grains.

Original languageEnglish
Pages (from-to)181-186
Number of pages6
JournalProcedia CIRP
Volume71
DOIs
StatePublished - 2018
Event4th CIRP Conference on Surface Integrity, CIRP CSI 2018 - Tianjin, China
Duration: Jul 11 2018Jul 13 2018

Bibliographical note

Publisher Copyright:
© 2018 Elsevier B.V. All rights reserved.

Keywords

  • Cryogenic machining
  • Grain refinement
  • Ti-6Al-4V alloy

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Experimental study on surface integrity of cryogenically machined Ti-6Al-4V alloy for biomedical devices'. Together they form a unique fingerprint.

Cite this