Extracellular vesicle transfer of miR-1 to adipose tissue modifies lipolytic pathways following resistance exercise

Benjamin I. Burke, Ahmed Ismaeel, Douglas E. Long, Lauren A. Depa, Peyton T. Coburn, Jensen Goh, Tolulope P. Saliu, Bonnie J. Walton, Ivan J. Vechetti, Bailey D. Peck, Taylor R. Valentino, C. Brooks Mobley, Hasiyet Memetimin, Dandan Wang, Brian S. Finlin, Philip A. Kern, Charlotte A. Peterson, John J. McCarthy, Yuan Wen

Research output: Contribution to journalArticlepeer-review

Abstract

Extracellular vesicles (EVs) have emerged as important mediators of intertissue signaling and exercise adaptations. In this human study, we provide evidence that muscle-specific microRNA-1 (miR-1) was transferred to adipose tissue via EVs following an acute bout of resistance exercise. Using a multimodel machine learning automation tool, we discovered muscle primary miR-1 transcript and CD63+ EV count in circulation as top explanatory features for changes in adipose miR-1 levels in response to resistance exercise. RNA-Seq and in-silico prediction of miR-1 target genes identified caveolin 2 (CAV2) and tripartite motif containing 6 (TRIM6) as miR-1 target genes downregulated in the adipose tissue of a subset of participants with the highest increases in miR-1 levels following resistance exercise. Overexpression of miR-1 in differentiated human adipocyte-derived stem cells downregulated these miR-1 targets and enhanced catecholamine-induced lipolysis. These data identify a potential EV-mediated mechanism by which skeletal muscle communicates with adipose tissue and modulates lipolysis via miR-1.

Original languageEnglish
Article numbere182589
JournalJCI insight
Volume9
Issue number21
DOIs
StatePublished - Nov 8 2024

Bibliographical note

Publisher Copyright:
Copyright: © 2024, Burke et al. This is an open access article published under the terms of the Creative Commons Attribution 4.0 International License.

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Extracellular vesicle transfer of miR-1 to adipose tissue modifies lipolytic pathways following resistance exercise'. Together they form a unique fingerprint.

Cite this