TY - JOUR
T1 - Fak is a critical regulator of neuroblastoma liver metastasis
AU - Lee, Sora
AU - Qiao, Jingbo
AU - Paul, Pritha
AU - O'connor, Kathleen L.
AU - Evers, Mark B.
AU - Chung, Dai H.
PY - 2012/12
Y1 - 2012/12
N2 - Neuroblastomas express increased levels of gastrin-releasing peptide receptor (GRP-R). However, the exact molecular mechanisms involved in GRP-R-mediated cell signaling in neuroblastoma growth and metastasis are unknown. Here, we report that focal adhesion kinase (FAK), as a critical downstream target of GRP-R, is an important regulator of neuroblastoma tumorigenicity. We found that FAK expression correlates with GRP-R expression in human neuroblastoma sections and cell lines. GRP-R overexpression in SK-N-SH cells increased FAK, integrin α3 and β1 expressions and cell migration. These cells demonstrated flatter cell morphology with broad lamellae, in which intense FAK expression was localized to the leading edges of lamellipodia. Interestingly, FAK activation was, in part, dependent on integrin α3 and β1 expression. Conversely, GRP-R silencing decreased FAK as well as Mycn levels in BE(2)-C cells, which displayed a denser cellular morphology. Importantly, rescue experiments in GRP-R silenced BE(2)-C cells showed FAK overexpression significantly enhanced cell viability and soft agar colony formation; similarly, FAK overexpression in SK-N-SH cells also resulted in increased cell growth. These effects were reversed in FAK silenced BE(2)-C cells in vitro as well as in vivo. Moreover, we evaluated the effect of FAK inhibition in vivo. FAK inhibitor (Y15) suppressed GRP-induced neuroblastoma growth and metastasis. Our results indicate that FAK is a critical downstream regulator of GRP-R, which mediates tumorigenesis and metastasis in neuroblastoma.
AB - Neuroblastomas express increased levels of gastrin-releasing peptide receptor (GRP-R). However, the exact molecular mechanisms involved in GRP-R-mediated cell signaling in neuroblastoma growth and metastasis are unknown. Here, we report that focal adhesion kinase (FAK), as a critical downstream target of GRP-R, is an important regulator of neuroblastoma tumorigenicity. We found that FAK expression correlates with GRP-R expression in human neuroblastoma sections and cell lines. GRP-R overexpression in SK-N-SH cells increased FAK, integrin α3 and β1 expressions and cell migration. These cells demonstrated flatter cell morphology with broad lamellae, in which intense FAK expression was localized to the leading edges of lamellipodia. Interestingly, FAK activation was, in part, dependent on integrin α3 and β1 expression. Conversely, GRP-R silencing decreased FAK as well as Mycn levels in BE(2)-C cells, which displayed a denser cellular morphology. Importantly, rescue experiments in GRP-R silenced BE(2)-C cells showed FAK overexpression significantly enhanced cell viability and soft agar colony formation; similarly, FAK overexpression in SK-N-SH cells also resulted in increased cell growth. These effects were reversed in FAK silenced BE(2)-C cells in vitro as well as in vivo. Moreover, we evaluated the effect of FAK inhibition in vivo. FAK inhibitor (Y15) suppressed GRP-induced neuroblastoma growth and metastasis. Our results indicate that FAK is a critical downstream regulator of GRP-R, which mediates tumorigenesis and metastasis in neuroblastoma.
KW - FAK
KW - GRP-R
KW - Malignant transformation
KW - Metastasis
KW - Neuroblastoma
UR - http://www.scopus.com/inward/record.url?scp=84874692201&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874692201&partnerID=8YFLogxK
U2 - 10.18632/oncotarget.732
DO - 10.18632/oncotarget.732
M3 - Article
C2 - 23211542
AN - SCOPUS:84874692201
SN - 1949-2553
VL - 3
SP - 1576
EP - 1587
JO - Oncotarget
JF - Oncotarget
IS - 12
ER -