TY - JOUR
T1 - Farnesol is utilized for protein isoprenylation and the biosynthesis of cholesterol in mammalian cells
AU - Crick, Dean C.
AU - Andres, Douglas A.
AU - Waechter, Charles J.
PY - 1995
Y1 - 1995
N2 - Evidence has been obtained indicating that free farnesol (F-OH) can be utilized for isoprenoid biosynthesis in mammalian cells. When rat C6 glial cells and an African green monkey kidney cell line (CV-1) were incubated with [3H]F-OH, radioactivity was incorporated into cholesterol, ubiquinone (CoQ) and isoprenylated proteins. The incorporation of label from [3H]F-OH into cholesterol in C6 and CV-1 cells was blocked by squalestatin 1 (SQ) which specifically inhibits the conversion of farnesyl pyrophosphate (F-P-P) to squalene. This result strongly suggests that cholesterol, and probably CoQ and protein, is metabolically labeled via F-P-P. SDS-PAGE analysis of the delipidated protein fractions from C6 and CV-1 cells revealed several labeled polypeptides. Consistent with these proteins being modified by isoprenylation of cysteine residues, Pronase E digestion released a major labeled product with the chromatographic mobility of [3H]farnesyl-cysteine (F-Cys). A different set of polypeptides was labeled when C6 and CV-1 cells were incubated with [3H]geranylgeraniol (GG-OH). Both sets of proteins appear to be metabolically labeled by [3H]mevalonolactone, and [3H]-labeled F-Cys and geranylgeranyl-cysteine (GG-Cys) were liberated from these proteins by Pronase E treatment. These cellular and biochemical studies indicate that F-OH can be used for isoprenoid biosynthesis and protein isoprenylation in mammalian cells after being converted to F-P-P by phosphorylation reactions that remain to be elucidated.
AB - Evidence has been obtained indicating that free farnesol (F-OH) can be utilized for isoprenoid biosynthesis in mammalian cells. When rat C6 glial cells and an African green monkey kidney cell line (CV-1) were incubated with [3H]F-OH, radioactivity was incorporated into cholesterol, ubiquinone (CoQ) and isoprenylated proteins. The incorporation of label from [3H]F-OH into cholesterol in C6 and CV-1 cells was blocked by squalestatin 1 (SQ) which specifically inhibits the conversion of farnesyl pyrophosphate (F-P-P) to squalene. This result strongly suggests that cholesterol, and probably CoQ and protein, is metabolically labeled via F-P-P. SDS-PAGE analysis of the delipidated protein fractions from C6 and CV-1 cells revealed several labeled polypeptides. Consistent with these proteins being modified by isoprenylation of cysteine residues, Pronase E digestion released a major labeled product with the chromatographic mobility of [3H]farnesyl-cysteine (F-Cys). A different set of polypeptides was labeled when C6 and CV-1 cells were incubated with [3H]geranylgeraniol (GG-OH). Both sets of proteins appear to be metabolically labeled by [3H]mevalonolactone, and [3H]-labeled F-Cys and geranylgeranyl-cysteine (GG-Cys) were liberated from these proteins by Pronase E treatment. These cellular and biochemical studies indicate that F-OH can be used for isoprenoid biosynthesis and protein isoprenylation in mammalian cells after being converted to F-P-P by phosphorylation reactions that remain to be elucidated.
UR - http://www.scopus.com/inward/record.url?scp=0029020395&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029020395&partnerID=8YFLogxK
U2 - 10.1006/bbrc.1995.1854
DO - 10.1006/bbrc.1995.1854
M3 - Article
C2 - 7794274
AN - SCOPUS:0029020395
SN - 0006-291X
VL - 211
SP - 590
EP - 599
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
IS - 2
ER -