Abstract
We present an extensive quantum Monte Carlo study of the Néel to valence-bond solid (VBS) phase transition on rectangular- and honeycomb-lattice SU(N) antiferromagnets in sign-problem-free models. We find that in contrast to the honeycomb lattice and previously studied square-lattice systems, on the rectangular lattice for small N, a first-order Néel-VBS transition is realized. On increasing N≥4, we observe that the transition becomes continuous and with the same universal exponents as found on the honeycomb and square lattices (studied here for N=5, 7, 10), providing strong support for a deconfined quantum critical point. Combining our new results with previous numerical and analytical studies, we present a general phase diagram of the stability of CPN-1 fixed points with q monopoles.
Original language | English |
---|---|
Article number | 137202 |
Journal | Physical Review Letters |
Volume | 111 |
Issue number | 13 |
DOIs | |
State | Published - Sep 26 2013 |
ASJC Scopus subject areas
- Physics and Astronomy (all)