Abstract
An electric field is used to construct pillars on films of bisphenol-A-polycarbonate (BPAPC) between two parallel electrodes. Both the size and density of the pillars are dependent on the film thickness. For the same experimental conditions, thicker films will lead to the formation of pillars of larger sizes and smaller densities. The time dependence of the average diameter of the pillars is found to be a linear function of the square root of the difference between the annealing time and incubation time. The temperature dependence of the temporal evolution of the pillars follows the Arrhenius relation with an activation enthalpy of 121.5 kJ mol−1. Increasing the film thickness and electric field intensity leads to the decrease of the characteristic wavenumber for the surface patterns at the same annealing temperature. There is a larger change in the film thickness for a thinner film than that of a thicker film after the formation of pillars under the same experimental conditions.
Original language | English |
---|---|
Pages (from-to) | 9015-9023 |
Number of pages | 9 |
Journal | RSC Advances |
Volume | 7 |
Issue number | 15 |
DOIs | |
State | Published - 2017 |
Bibliographical note
Publisher Copyright:© The Royal Society of Chemistry.
Funding
This work was financially supported by the Ministry of Science and Technology, Taiwan.
Funders | Funder number |
---|---|
Ministry of Science and Technology, Taiwan |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering