Abstract
The effect of Cu, Mn and Zn addition on cobalt ferrite was investigated for Fischer-Tropsch synthesis (FTS). Oxalate co-precipitation followed by decomposition under inert conditions was used to obtain various metal containing cobalt ferrites (Co0.7M0.3Fe2O4). The carburization of cobalt ferrite in flowing CO at 270 °C and 175 psig yielded iron carbides (χ-Fe5C2 and ϵ′-Fe2.2C) along with a bimetallic FeCo alloy. The extent of carburization was compared among Cu, Mn, and Zn doped catalysts with undoped cobalt ferrites under similar conditions. XRD and Mössbauer spectroscopy analysis of the freshly carburized samples followed by passivation revealed that carburization of cobalt ferrite did not change appreciably with addition of Cu or Mn. On the other hand, Zn was found to retard the carburization of cobalt ferrite. Analysis of the used FT catalysts suggests that Cu is less efficient over Mn and Zn in stabilizing the iron carbides (i.e., active form of iron) during FT synthesis. The FT activity remains more or less the same for the undoped, Cu and Zn containing cobalt ferrites at higher temperatures. The CO conversion of Co0.7Mn0.3Fe2.0 catalyst was much lower than the other catalysts tested. Addition of Zn or Mn to cobalt ferrite was found to promote alcohol formation, particularly at higher reaction temperatures. The water-gas shift activity of the catalysts was found to decrease in the following order, Co1.0Fe2.0 > Co0.7Mn0.3Fe2.0 > Co0.7Zn0.3Fe2.0 > Co0.7Cu0.3Fe2.0.
Original language | English |
---|---|
Pages (from-to) | 62356-62367 |
Number of pages | 12 |
Journal | RSC Advances |
Volume | 6 |
Issue number | 67 |
DOIs | |
State | Published - 2016 |
Bibliographical note
Funding Information:This work carried out at the CAER was supported by the Commonwealth of Kentucky. Research described in this paper was performed in part at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the National Research Council Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan.
Publisher Copyright:
© 2016 The Royal Society of Chemistry.
Funding
This work carried out at the CAER was supported by the Commonwealth of Kentucky. Research described in this paper was performed in part at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the National Research Council Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan.
Funders | Funder number |
---|---|
Government of Saskatchewan | |
University of Saskatchewan | |
Canadian Institutes of Health Research | |
Natural Sciences and Engineering Research Council of Canada | |
Western Economic Diversification Canada | |
National Research Council Canada (NRCC) | |
Canada Foundation for Innovation |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering