Fluoroethoxy-1,4-diphenethylpiperidine and piperazine derivatives: Potent and selective inhibitors of [3H]dopamine uptake at the vesicular monoamine transporter-2

Emily R. Hankosky, Shyam R. Joolakanti, Justin R. Nickell, Venumadhav Janganati, Linda P. Dwoskin, Peter A. Crooks

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [3H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [3H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [3H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [3H]DA uptake at VMAT2, Ki changes in the nanomolar range (Ki = 0.014–0.073 µM). Compound 15d exhibited the highest affinity (Ki = 0.014 µM) at VMAT2, and had 160-, 5-, and 60-fold greater selectivity for VMAT2 vs. DAT, SERT and hERG, respectively. Compound 15b exhibited the greatest selectivity (>60-fold) for VMAT2 relative to all the other targets evaluated, and 15b had high affinity for VMAT2 (Ki = 0.073 µM). Compound 15b was considered the lead compound from this analog series due to its high affinity and selectivity for VMAT2.

Original languageEnglish
Pages (from-to)5467-5472
Number of pages6
JournalBioorganic and Medicinal Chemistry Letters
Issue number24
StatePublished - Dec 15 2017

Bibliographical note

Publisher Copyright:
© 2017 Elsevier Ltd


  • Dopamine uptake
  • Fluoroethoxy piperidine and piperazine analogs
  • Lobelane
  • VMAT2
  • hERG

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Pharmaceutical Science
  • Drug Discovery
  • Clinical Biochemistry
  • Organic Chemistry


Dive into the research topics of 'Fluoroethoxy-1,4-diphenethylpiperidine and piperazine derivatives: Potent and selective inhibitors of [3H]dopamine uptake at the vesicular monoamine transporter-2'. Together they form a unique fingerprint.

Cite this