Forecast of Community Total Electric Load and HVAC Component Disaggregation through a New LSTM-Based Method

Huangjie Gong, Rosemary E. Alden, Aron Patrick, Dan M. Ionel

Research output: Contribution to journalArticlepeer-review

Abstract

The forecast and estimation of total electric power demand of a residential community, its baseload, and its heating ventilation and air-conditioning (HVAC) power component, which represents a very large portion of a community electricity usage, are important enablers for optimal energy controls and utility planning. This paper proposes a method that employs machine learning in a multi-step integrated approach. An LSTM model for total electric power at the main circuit feeder is trained using historic multi-year hourly data, outdoor temperature, and solar irradiance. New key temperature indicators, TmHAVC, corresponding to the standby zero-power operation for HVAC systems for summer cooling and winter heating are introduced using a V-shaped hourly total load curve. The trained LTSM model is additionally run with TmHVAC and zero irradiance inputs yielding an estimated baseload, which is representative of typical occupancy patterns. The HVAC power component is disaggregated as the difference between total and baseload power. Total power forecasts of an aggregated residential community as seen by major distribution lines are experimentally validated with a satisfactory MAPE error below 10% based on a 4-year dataset from a representative suburban community with more than 1800 homes in Kentucky, U.S. Discussions regarding the validity of the separation method based on combined considerations of fundamental physics, statistics, and human behavior are also included.

Original languageEnglish
Article number2974
JournalEnergies
Volume15
Issue number9
DOIs
StatePublished - May 1 2022

Bibliographical note

Funding Information:
Acknowledgments: This paper is based upon work supported in part by the National Science Foundation (NSF) under Award No. 1936131 and under NSF Graduate Research Fellowship Grant No. 1839289. Any opinion, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of NSF. The support of the Louisville Gas and Electric and Kentucky Utilities, part of the PPL Corporation family of companies, and of University of Kentucky, the L. Stanley Pigman Endowment is also gratefully acknowledged.

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • air-conditioning
  • baseload
  • big data
  • community power
  • disaggregation
  • distribution power system
  • electric load forecasting
  • heating
  • HVAC system power
  • LSTM
  • machine learning
  • NILM
  • smart grid
  • smart meter

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Forecast of Community Total Electric Load and HVAC Component Disaggregation through a New LSTM-Based Method'. Together they form a unique fingerprint.

Cite this