Formulation of Rectifier Numerical Average-Value Model for Direct Interface With Inductive Circuitry

Yu Qi Zhang, Aaron M. Cramer

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


The computational cost for the simulation of detailed models of machine-rectifier systems is expensive because of repetitive diodes switching. Average-value models (AVMs) of machine-rectifier systems have been developed that can alleviate the computational burden by neglecting the details of the switching of each individual diode while retaining the average characteristics. This paper proposes an alternative formulation of numerical AVMs of machine-rectifier systems, which makes direct use of the natural dynamic impedance of the rectifier without introducing low-frequency approximations or algebraic loops. By using this formulation, direct interface of the AVM is achieved with inductive circuitry on both the ac and dc sides allowing traditional voltage-in, current-out formulations of the circuitry on these sides to be used with the proposed formulation directly. This numerical AVM formulation is validated against an experimentally validated detailed model and compared with previous AVM formulations. It is demonstrated that the proposed AVM formulation accurately predicts the system's low-frequency behavior during both steady and transient states, including the cases where previous AVM formulations cannot predict accurate results. Both run times and numbers of time steps needed by the proposed AVM formulation are comparable to those of existing AVM formulations and significantly decreased compared with the detailed model.

Original languageEnglish
Article number8485385
Pages (from-to)741-749
Number of pages9
JournalIEEE Transactions on Energy Conversion
Issue number2
StatePublished - Jun 2019

Bibliographical note

Funding Information:
Manuscript received January 19, 2018; revised May 1, 2018; accepted September 19, 2018. Date of publication October 7, 2018; date of current version May 2, 2019. This work was supported by the Office of Naval Research (ONR) through the ONR Young Investigator Program N00014-15-1-2475. Paper no. TEC-00081-2018. (Corresponding author: Aaron M. Cramer.) The authors are with the University of Kentucky, Lexington, KY 40506 USA (e-mail:,;

Publisher Copyright:
© 2019 IEEE.

Copyright 2019 Elsevier B.V., All rights reserved.


  • AC machines
  • converters
  • generators
  • simulation

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering


Dive into the research topics of 'Formulation of Rectifier Numerical Average-Value Model for Direct Interface With Inductive Circuitry'. Together they form a unique fingerprint.

Cite this