TY - JOUR
T1 - Four decades of regional wet deposition, local bulk deposition, and stream-water chemistry show the influence of nearby land use on forested streams in Central Appalachia
AU - Williamson, Tanja N.
AU - Sena, Kenton L.
AU - Shoda, Megan E.
AU - Barton, Christopher D.
N1 - Publisher Copyright:
© 2023
PY - 2023/4/15
Y1 - 2023/4/15
N2 - Hydrologic monitoring began on two headwater streams (<1 km2) on the University of Kentucky's Robinson Forest in 1971. We evaluated stream-water (1974–2013) and bulk-deposition (wet + dust) (1984–2013) chemistry in the context of regional wet-deposition patterns that showed decreases in both sulfate and nitrate concentrations as well as proximal surface-mine expansion. Decadal time steps (1974–83, 1984–93, 1994–2003, 2004–2013) were used to quantify change. Comparison of the first two decades showed similarly decreased sulfate (minimum flow-adjusted annual-mean concentration of ≈13.5 mg/L in 1982 to 8.8 mg/L in 1992) and increased pH (6.6–6.8) in both streams, reflecting contemporaneous changes in both bulk and wet deposition. In contrast, concentrations of nitrate (0.14 to >0.25 mg/L) and base cations increased between these two decades, coinciding with expansion of surface mining between 1985 and 1995. In 2004, stream-water pH (6.7 in 2004), sulfate (9.2 mg/L), and nitrate (>0.11 mg/L) were similar to 1982, despite wet-deposition concentrations being lower. Base-cation concentrations were higher in the stream adjacent to ongoing surface mining relative to the stream situated near the middle of the experimental forest. However, pH decreased to approximately 5.7 by 2013 for both streams, which, combined with a shift in dominant cations from calcium to magnesium and potassium, indicates that the soil-buffering capacity of this landscape has been exceeded. Ratios of bulk deposition and stream-water concentrations indicate enrichment of sulfate (1.7–25.2) and cations (0.5–64.8), but not nitrogen (0.1–5.6), indicating that the Forest is not nitrogen saturated and that ongoing changes in water-quality are sulfate driven. When concentrations were adjusted to account for changes in streamflow (climate) over the 4 decades, external influences (land management/regulation) explained most change. The amount and direction of change differed among constituents, both between consecutive decades and between the first and last decades, reflecting the influence of localized surface mining even as regional wet deposition continued to improve due to the Clean Air Act. The implication is that localized stressors have the potential to out-pace the benefits of national environmental policies for communities that depend on local water-resources in similar environments.
AB - Hydrologic monitoring began on two headwater streams (<1 km2) on the University of Kentucky's Robinson Forest in 1971. We evaluated stream-water (1974–2013) and bulk-deposition (wet + dust) (1984–2013) chemistry in the context of regional wet-deposition patterns that showed decreases in both sulfate and nitrate concentrations as well as proximal surface-mine expansion. Decadal time steps (1974–83, 1984–93, 1994–2003, 2004–2013) were used to quantify change. Comparison of the first two decades showed similarly decreased sulfate (minimum flow-adjusted annual-mean concentration of ≈13.5 mg/L in 1982 to 8.8 mg/L in 1992) and increased pH (6.6–6.8) in both streams, reflecting contemporaneous changes in both bulk and wet deposition. In contrast, concentrations of nitrate (0.14 to >0.25 mg/L) and base cations increased between these two decades, coinciding with expansion of surface mining between 1985 and 1995. In 2004, stream-water pH (6.7 in 2004), sulfate (9.2 mg/L), and nitrate (>0.11 mg/L) were similar to 1982, despite wet-deposition concentrations being lower. Base-cation concentrations were higher in the stream adjacent to ongoing surface mining relative to the stream situated near the middle of the experimental forest. However, pH decreased to approximately 5.7 by 2013 for both streams, which, combined with a shift in dominant cations from calcium to magnesium and potassium, indicates that the soil-buffering capacity of this landscape has been exceeded. Ratios of bulk deposition and stream-water concentrations indicate enrichment of sulfate (1.7–25.2) and cations (0.5–64.8), but not nitrogen (0.1–5.6), indicating that the Forest is not nitrogen saturated and that ongoing changes in water-quality are sulfate driven. When concentrations were adjusted to account for changes in streamflow (climate) over the 4 decades, external influences (land management/regulation) explained most change. The amount and direction of change differed among constituents, both between consecutive decades and between the first and last decades, reflecting the influence of localized surface mining even as regional wet deposition continued to improve due to the Clean Air Act. The implication is that localized stressors have the potential to out-pace the benefits of national environmental policies for communities that depend on local water-resources in similar environments.
KW - Base cations
KW - National Atmospheric Deposition Program
KW - Nitrate
KW - Sulfate
KW - Surface mining
KW - pH
UR - http://www.scopus.com/inward/record.url?scp=85147585833&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85147585833&partnerID=8YFLogxK
U2 - 10.1016/j.jenvman.2023.117392
DO - 10.1016/j.jenvman.2023.117392
M3 - Article
C2 - 36739772
AN - SCOPUS:85147585833
SN - 0301-4797
VL - 332
JO - Journal of Environmental Management
JF - Journal of Environmental Management
M1 - 117392
ER -