Abstract
The purpose of this study was to investigate the effects of 4-weeks of high- versus low-load resistance training to failure on rate of torque development (RTD), electromechanical delay (EMD), and contractile twitch characteristics. Fifteen men (mean±SD; age=21.7±2.4 yrs) were randomly assigned to either a high- (80% 1RM; n=7) or low-load (30% 1RM; n=8) training group and completed elbow flexion resistance training to failure 3 times per week for 4 weeks. The participants were tested at baseline, 2-, and 4-weeks of training. Peak RTD (pRTDV) and RTD at 0-30 (RTD30V), 0-50 (RTD50V), 0-100 (RTD100V), and 0-200 (RTD200V) ms, integrated EMG amplitude (iEMG) at 0-30, 0-50, and 0-100 ms, and EMD were quantified during maximal voluntary isometric muscle actions. Peak twitch torque, peak RTD, time to peak twitch, 1/2 relaxation time and the peak relaxation rate were quantified during evoked twitches. Four weeks of high-load, but not low-load resistance training, increased RTD200V. There were also increases in iEMG during the first 30 ms of muscle activation for the high- and low-load groups, which may have indirectly indicated increases in early phase motor unit recruitment and/or firing frequency. There were no significant training-induced adaptations in EMD or contractile twitch properties.
Original language | English |
---|---|
Pages (from-to) | 135-144 |
Number of pages | 10 |
Journal | Journal of Musculoskeletal Neuronal Interactions |
Volume | 16 |
Issue number | 2 |
State | Published - Jun 2016 |
Bibliographical note
Publisher Copyright:© 2016, International Society of Musculoskeletal and Neuronal Interactions. All rights reserved.
Keywords
- Electromyography
- Rapid torque production
- Skeletal muscle
ASJC Scopus subject areas
- Endocrinology, Diabetes and Metabolism
- Physiology
- Orthopedics and Sports Medicine